Data-Driven Diagnostics and Prognostics for Modelling the State of Health of Maritime Battery Systems – a Review
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Battery systems are becoming an increasingly attractive alternative for powering ocean going ships, and the number of fully electric or hybrid ships relying on battery power for propulsion and maneuvering is growing. In order to ensure the safety of such electric ships, it is of paramount importance to monitor the available energy that can be stored in the batteries, and classification societies typically require that the state of health of the batteries can be verified by independent tests – annual capacity tests. However, this paper discusses data-driven diagnostics for state of health modelling for maritime battery systems based on operational sensor data collected from the batteries as an alternative approach. Thus, this paper presents a comprehensive review of different data-driven approaches to state of health modelling, and aims at giving an overview of current state of the art. Furthermore, the various methods for data-driven diagnostics are categorized in a few overall approaches with quite different properties and requirements with respect to data for training and from the operational phase. More than 300 papers have been reviewed, most of which are referred to in this paper. Moreover, some reflections and discussions on what types of approaches can be suitable for modelling and independent verification of state of health for maritime battery systems are presented.
How to Cite
##plugins.themes.bootstrap3.article.details##
Battery systems, degradation modelling, diagnostics, capacity fade, data-driven models
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.