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ABSTRACT

Battery systems are becoming an increasingly attractive al-
ternative for powering ocean going ships, and the number
of fully electric or hybrid ships relying on battery power for
propulsion and maneuvering is growing. In order to ensure
the safety of such ships, it is of paramount importance to
monitor the available energy that can be stored in the batter-
ies, and classification societies typically require that the state
of health of the batteries can be verified by independent tests
– annual capacity tests. This paper discusses data-driven di-
agnostics for state of health modelling for maritime battery
systems based on operational sensor data as an alternative ap-
proach. It presents a comprehensive review of different data-
driven approaches to state of health modelling, and aims at
giving an overview of current state of the art. Furthermore,
the various methods for data-driven diagnostics are catego-
rized in a few overall approaches with quite different prop-
erties and requirements with respect to data for training and
from the operational phase. More than 300 papers have been
reviewed, many of which are referred to in this paper. More-
over, some reflections and discussions on what types of ap-
proaches can be suitable for modelling and independent ver-
ification of state of health for maritime battery systems are
presented.

1. INTRODUCTION

There is currently a significant push for emission reduction
and a change to more environmentally friendly technologies
for maritime transport. Electric or hybrid ships using batteries

Erik Vanem et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

is an attractive alternative for many shipping segments with
significant environmental benefits and large potential for fuel,
cost and emission savings.

The safety of battery-powered ships is important. Fire and
explosion are obvious risks, but another central aspect is en-
suring that the available energy stored in the batteries is suf-
ficient to cover the power demand. Loss of propulsion power
in a critical situation can lead to serious accidents such as
collision or grounding. Therefore, a reliable estimation and
prediction of the actual available energy of a battery is cru-
cial.

Battery systems are ageing, meaning that the energy storage
capacity degrades by calendar time and by charge/discharge
cycles. The ageing process affects both the amount of charge
that can be stored and the performance of the power delivery.
For ships relying on energy from onboard battery systems, it
is important to ensure that the capacity of the battery system
is sufficient for the safe operation of the vessel at all times.
Thus, accurate evaluation and verification of the capacity and
performance of maritime battery systems is crucial to safe and
sustainable operation of battery powered ships. It is noted
that other aspects of battery degradation may be equally im-
portant. For example, degradation does not only affect the
capacity, but also fire safety and thermal runaway properties
are influenced by degradation (Geisbauer, Wöhrl, Mittmann,
& Schweiger, 2020; D. Ren et al., 2019).

Due to its safety criticality, class societies typically require
annual validation testing of battery State of Health (SOH) for
ships utilizing battery systems for propulsion or manoeuvring
purposes. There are many challenges with this approach, and
data-driven approaches to SOH monitoring and prediction are
believed to be attractive alternatives. From a practical point
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of view, the annual capacity test is time consuming and typ-
ically requires that the ship is taken out of operation for one
full day per year. Moreover, the accuracy of the test is ques-
tionable due to several factors influencing the results, such
as variability in loads, temperatures and Depth of Discharge
(DOD). Maritime battery systems are typically designed for a
10-year lifetime while the ships are designed for 25-30 years.
When battery systems are approaching their end of useful life
(EOL) reliable estimation of SOH will become much more
important and making correct decisions on remaining useful
life (RUL) will have great financial and safety implications.

This paper aims at describing the state of the art in data-driven
methods for SOH estimation of maritime battery systems. It
is based on a thorough literature survey, presented in (Vanem,
Bertinelli Salucci, Bakdi, & Alnes, 2021), and outlines vari-
ous approaches reported in the scientific and engineering lit-
erature for utilizing sensor data to estimate the effect of degra-
dation on the available capacity of such battery systems.

1.1. Condition Monitoring for Battery Systems

With a rechargeable battery system, the amount of energy
available at all times will vary continuously as the battery is
repeatedly charged and discharged, and the state of charge
(SOC) is a measure of the extent to which the battery is
charged relative to its capacity. That is, a fully charged bat-
tery will have SOC = 100% and a fully discharged battery
will have SOC = 0%. The State of Latent Energy (SoLE) is
a a similar measure of the amount of available useful energy
in the battery (Rozas, Troncoso-Kurtovic, Ley, & Orchard,
2021) that do not rely on a normalization constant.

The capacity of a battery to store energy will typically de-
grade over time, and the state of health (SOH) is a measure
of the battery’s capacity relative to its nominal capacity, that
is, the initial capacity when the battery is new. Formally, the
State of Health of a battery can be defined as

SOH =
CAvailable

CNominal
× 100%, (1)

where CAvailable denotes the available capacity of the battery
and CNominal refers to the nominal capacity. It should be
noted that alternative definitions of SOH exist, for example
based on internal resistance, and that these are generally not
identical. Although there is a correlation between capacity-
based SOH and resistance-based SOH it is important to be
aware that SOH is not unambiguously defined. In this paper,
the main focus is on available capacity and unless otherwise
noted, SOH should be taken to mean capacity-based state of
health as defined in Eq. (1).

The cycle life or battery life of a rechargeable battery refers
to the number of full discharge-charge cycles the battery can
experience before its end of life, and many different factors
influence the actual cycle life, including the rate and depth

of the cycles and temperature. Alternatively, battery life can
sometimes be described in terms of cumulative discharge (to-
tal amount of charge delivered by the battery over its lifetime)
or equivalent full cycles (summation of partial cycles as frac-
tions of full charge-discharge cycles).

Currently, all maritime battery suppliers are required to have
a SOH estimation algorithm and to verify the SOH annually
through in-situ capacity testing. As ship-to-shore connectiv-
ity has immensely improved over the past few years it is natu-
ral to evaluate whether a sensor-based monitoring system can
both reduce downtime for the operator and improve the qual-
ity of the SOH verification.

Condition monitoring systems typically include diagnostics
and prognostics. Within such a framework, state of health
estimation corresponds to the diagnostics part where reliable
estimation of state of health reflects the energy storage capac-
ity of the battery at any given time. This would be influenced
by the operating history of the battery system. Prognostics in
this context would amount to predicting the remaining use-
ful life of the battery or the time until the battery needs to be
replaced. This would require some threshold to be specified
for when the battery reaches its end of life, which could be
in terms of SOH below a specified limit, as well as some as-
sumptions on the future operation of the system and should
predict future degradation trends based on this.

1.2. Battery Technologies and Terminology

Batteries have been around for a long time and battery tech-
nologies are continuously being developed since the first elec-
trochemical batteries were invented in the late 18th century.
Fundamentally, an electrochemical battery cell must con-
sist of an inner ionic channel allowing for transport of ions,
two materials with interfaces where the exchange of elec-
trons and chemical reactions can occur and an outer electri-
cal channel for transport of electrons. The materials where
exchange of electrons occur are referred to as the positive
and negative electrodes and the ionic channel are referred to
as the electrolyte. Currently, the most widespread type of
rechargeable batteries are lithium-ion batteries, and there ex-
ist a range of different chemistries with different character-
istic. An overview of maritime and offshore battery systems
can be found in (DNV GL, 2016).

For the purpose of establishing data-driven models to es-
timate state of health and predict remaining useful life, it
should be acknowledged that the different chemistries may
have very different characteristics with regards to how dif-
ferent factors influence the degradation. Furthermore, bat-
tery cells can be of different forms and types, and the most
common lithium-ion cell types for maritime applications are
cylindrical, prismatic and soft pouch cells. These form fac-
tors have different performance characteristics.
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The C-rate is a measure of the rate of which a battery is being
charged or discharged and is defined as the current through
the battery divided by the current needed to discharge the bat-
tery’s nominal rated capacity in one hour. It has the unit 1/h
(per hour).

A battery consist of one or more connected electrochemical
cells. Cells can be connected in series in order to increase
the electric potential of the battery or connected in parallel
in order to increase the capacity of the battery. More com-
plicated configurations and architectures may involve several
cells in different combinations of series and parallel connec-
tions.There may be uneven loads and temperatures on the dif-
ferent cells, and different cells within the same battery may
experience different degradation trends. Often, lab testing is
carried out on single cells and operational sensor data from
a battery system typically include measurement both at cell
and system level.

A rechargeable battery will be operated in cycles consisting
of charging, discharging and rest periods throughout its oper-
ational life. The charging and discharging cycles could be at
different rates (C-rates) and depths (range of SOC), and the
rest periods can occur at different state of charge. All of these
are influencing the degradation of the battery. During normal
operation the batteries will often be operated under variable
conditions, with constantly varying rates and depths of the
cycles and rest periods, and sensor measurements of battery
voltage, current and temperature over time can describe the
operational profile

Modern batteries are equipped with a battery management
system (BMS), which are very important for the safe oper-
ation of the battery, and also for optimizing the use of the
battery (Weicker, 2014). A BMS should monitor the state
of a battery at all times and protect the battery from operating
outside its safe operating area to prevent accidents such as ex-
plosion or thermal runaway. It collects sensor measurements
of basic parameters such as voltage, current and temperature
and uses these to calculate and monitor various derived pa-
rameters and quantities such as state of charge and state of
health.

Some factors that influence the degradation of a battery are
well known, even though the degradation mechanisms may
be different for different battery types and chemistries. The
degradation leads to loss of capacity, power fade and increase
in internal resistance. As a result of this, the terminal voltage
and range of state of charge will be reduced as the battery de-
grades. Typically, degradation and capacity loss are ascribed
to calendar ageing and cyclic ageing effects. A list of factors
influencing battery health presented in (Balagopal & Chow,
2015) include temperature, charging and discharging cycles,
depth of discharge, overcharging charge/discharge rate and
calendar ageing. An overview of important battery degrada-
tion mechanisms as well as their causes and effects are also

given in e.g. (Vetter et al., 2005; Birkl, Roberts, McTurk,
Bruce, & Howey, 2017).

The degradation may not be similar in the beginning of life
(BOL) and when approaching end of life (EOL). Typically,
one expect to observe a so-called knee-point in the degrada-
tion curves, where a sudden change from relatively moderate
degradation to a more aggressive degradation occurs towards
the EOL. Maritime batteries should typically be replaced be-
fore a knee-point occurs in the degradation curves, to avoid
swiftly deteriorating battery capacities during operation.

The availability of high quality data with sufficient accuracy,
resolution, relevance and completeness is important for devel-
oping and training data-driven models for state of health esti-
mation. There are essentially two different ways of obtaining
such data, i.e. data collected from measurements of battery
systems during operation and data collected from laboratory
experiments. Some limitations of actual measurements are
that the availability of sufficiently long time series are scarce
and the fact that one may have only partial information and
control of the conditions under which the data is collected.
Batteries are also typically replaced before their end of life, so
data from the critical period when the batteries approach their
end of useful life will often not be available. On the other
hand, lab data can be collected under controlled, often ide-
alized conditions, where for example temperatures and loads
can be kept constant throughout the experiments. However,
this may not be very representative for realistic operation of
the batteries, with variable loads and operating conditions.

1.3. Classification Rules for Electric Ships

Electrical power systems have been used onboard ships for
a long time, and recently fully electrical or hybrid ships de-
pending on battery power for propulsion have become attrac-
tive for many ship segments. Ocean going ship are subject to
classification rules (DNV GL, 2020a), and DNV has an addi-
tional class notation, BATTERY, for battery powered vessels
(DNV GL, 2020b). The Battery(Power) class notation is re-
quired for all ships - all-electric or hybrid - that relies on bat-
tery power for propulsion and the Battery(Safety) notation
applies to all vessels with lithium-ion battery systems with an
aggregated rated capacity of more than 20 kWh and not hav-
ing the Battery(Power) notation. The annual capacity test is
a requirement of the Battery(Power) notation.

2. LITERATURE SURVEY ON DATA-DRIVEN MODELS
FOR SOH ESTIMATION

This paper aims at presenting state-of-the-art in data-driven
models for state of health of maritime battery systems. The
amount of literature on this topic is enormous and it seems an
impossible task to cover all relevant papers and reports in the
academic and engineering literature in detail. Notwithstand-
ing, the literature survey presented herein are believed to give
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a fair overview of different approaches to data-driven mod-
elling of the condition of batteries, with an emphasis on the
more recent literature and on the various overall approaches
that can be taken.

In the following, a high-level review of methods proposed in
the scientific literature will be given, with a focus on data-
driven methods based on sensor measurements from batter-
ies in operation. An effort is made to group models in a
few main categories, although some proposals may include
elements from various categories. Typically, methods are
grouped into experimental methods such as various forms
of measurements, model-based methods relying on electro-
chemical or equivalent circuit models and pure data-driven
methods. However, the distinction is not always crisp, and a
combination of techniques will typically be employed.

2.1. Previous review papers

Some recent review papers on ageing mechanisms have been
presented in e.g. (Barré, Deguilhem, Grolleau, & Gérard,
2013; Kabir & Demirocak, 2017; Han, Lu, et al., 2019;
Saqli, Bouchareb, Oudghiri, & M’Sirdi, 2020). A range of
methods for describing battery degradation are summarized
in e.g. (Barré et al., 2013), which concludes that models
that meet all performance criteria do not yet exist. Other
review papers generally concur to this conclusion and reli-
able data-driven approaches for estimating battery capacity
remains a challenge. See e.g. (Pelletier, Jabali, Laporte, &
Veneroni, 2017; Farmann, Waag, Marongiu, & Sauer, 2015;
Pastor-Fernández, Yu, Widanage, & Marco, 2019; Balagopal
& Chow, 2015; Cuma & Koroglu, 2015; Berecibar, Gandi-
aga, et al., 2016; Ungurean, Cârstoiu, Micea, & Groza, 2017;
Huixin, Qin, Li, & Zhao, 2020; Xiong, Li, & Tian, 2018; Lipu
et al., 2018; Lucu, Martinez-Laserna, Gandiaga, & Camb-
long, 2018) for recent reviews on capacity estimation. Sev-
eral review studies focus on prognostics and RUL estimation
of lithium-ion batteries, see e.g. (Y. Li et al., 2019; L. Wu, Fu,
& Guan, 2016; Su & Chen, 2017; Saha, Goebel, & Chriso-
phersen, 2009).

2.2. Direct Measurement Techniques

Different approaches for more or less direct measurements
of state of health exist and are proposed for online SOH es-
timation. Some of these can be based on continuous mea-
surements such as time series of currents, voltages and tem-
peratures, whereas others are based on measurements col-
lected during particular experiments or procedures (Karlsen,
Dong, Yang, & Carvalho, 2019). For example, the annual
test currently required for maritime battery systems used for
propulsion utilizes a coulomb counting technique and a con-
trolled charging/discharging procedure. This is one approach
to SOH verification, but the need for specific charging and
discharging cycles under controlled environments, with con-

stant temperature and C-rate, means that normal operations
need to be disrupted for a period of time. Other measure-
ment techniques also exist, see e.g. a more comprehensive
overview in (Barai et al., 2019). Ideally, methods that can be
used based on continuous measurements of variables that are
routinely collected under normal operations without the need
for specific instrumentation or procedures are preferable.

2.2.1. Coulomb Counting

Coulomb counting, also referred to as current integration
method, integrates the current to or from the battery during
a full cycle to determine the capacity directly, according to
the basic relation

Q =

∫ t1

t0

I(τ)dτ, (2)

where Q is the capacity, I(t) is the current at time t and t0
and t1 refers to the times of SOC = 0% and SOC = 100%, re-
spectively. That is, the current is integrated over a full cycle
from full to empty (or from empty to full) to count how much
electric charge the battery can store. Often, the equation
above can be modified by also including the Coulombic ef-
ficiency, which is tacitly assumed to be unity in Eq. (2). One
practical problem with this approach is that it requires a full
charge/discharge cycle to be able to estimate the maximum
capacity and this is hardly ever experienced in actual nor-
mal operations. Moreover, the measurements need to be per-
formed under controlled conditions, with constant, typically
low, C-rate and a specific ambient temperature and is there-
fore not directly applicable as an online method. In addition,
subjecting the battery to full cycles between 0% and 100%
may contribute to accelerated degradation and such tests risk
shortening the lifetime of the battery. The annual test for mar-
itime battery systems are based on Coulomb counting and
therefore needs to take the vessel out of service to perform
a series of controlled charge and discharge cycles.

Capacity estimation can possibly be based on coulomb count-
ing of deep cycles (not necessarily full), at reasonably homo-
geneous conditions with respect to C-rates and temperatures.
The relationship between total capacity, Q and state of charge
at times, t1 and t2 is as follows, where also the Coulombic ef-
ficiency η, is included.

∆SOC = SOC(t2)− SOC(t1) =
1

Q

∫ t2

t1

ηI(τ)dτ (3)

Note, however, that for this approach to be useful there is a
need for accurate and reliable SOC estimates.

Estimation of SOH based on Coulomb counting of partial cy-
cles, is proposed in (Stroe, Knap, & Schaltz, 2018; Q. Yang et
al., 2017), indicating that the reduced voltage range measure-
ments are likely to underestimate the capacity fade, see also
(Meng et al., 2019). Coulomb counting are also often pro-
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posed to be used together with other data-driven or model-
based techniques. It is possible to include a current correc-
tion term in the Coulomb counting procedure to account for
the fact that capacity generally decreases as discharge current
(C-rate) increases (Z. Deng, Yang, Cai, & Deng, 2017). The
Peukert equation describes the relationship between the dis-
charge current (I) and the discharge time (t) by stating that
Ikt is a constant, where k is the Peukert coefficient (Doerffel
& Sharkh, 2006; Z. Deng, Yang, Cai, Deng, & Sun, 2016).
However, this requires the battery to be discharged at a con-
stant C-rate throughout the cycle (Doerffel & Sharkh, 2006),
and also at constant temperature. Extensions of the Coulomb
counting method are discussed in (Gismero, Schaltz, & Stroe,
2020)

2.2.2. Hybrid Pulse Power Characterisation (HPPC) and
Electrochemical Impedance Spectroscopy (EIS)

HPPC and EIS are methods to measure the electrochemical
response of certain inputs. HHPC measures the cell voltage
response to short high-current charge/discharge pulses and
EIS measures the frequency response of the battery by mea-
suring the impedance over a range of AC input at different
frequencies. It yields a impedance spectrum from which it
is possible to estimate various battery characteristics, such as
charge transfer resistance, capacitance and ohmic resistance
as different frequencies are associated with different mech-
anisms in the battery, and to relate this to state of health
(Blanke et al., 2005; Tröltzsch, Kanoun, & Tränkler, 2006;
Pérez, Benavides, Rozas, Seria, & Orchard, 2018). A passive
impedance measurement technique is proposed in (Bohlen,
2008) to alleviate the need for specific hardware implementa-
tions, allowing the impedance spectrum to be estimated from
arbitrary excitation signals by way of digital filters. See also
(Howey, Mitcheson, Yufit, Offer, & Brandon, 2014) for an
example of online EIS measurements, and . An extension of
the EIS to study also higher order harmonics and nonlinear
responses is proposed in (Harting, Wolff, Röder, & Krewer,
2017; Harting, Schenkendorf, Wolff, & Krewer, 2018).

EIS measurements are used together with model-based ap-
proaches in (Kuipers et al., 2020; X. Wang, Wei, & Dai,
2019) and with data-driven approaches in e.g. (Y. Zhang et
al., 2020) for SOH estimation and RUL prediction.

2.2.3. Incremental Capacity Analysis (ICA) and Differ-
ential Voltage Analysis (DVA)

IVA and DVA measure the change in charge (Q) and volt-
ages (V) during charging/discharging and estimates the gra-
dient curves, dQ/dV and dV/dQ, respectively, to determine
changes in electrochemical properties. Such curves will typ-
ically exhibit features like plateaus and peaks that can be as-
sociated with different mechanisms and phases in the battery
and changes in these features can be ascribed to battery degra-

dation. It is also possible to apply this method for partial
charging curves, which is a huge advantage for online mon-
itoring. However, two major challenges with this approach
for online monitoring based on real-time sensor data is that
a constant and low current is typically needed in order to ac-
quire accurate curves and the differentiation of noisy, discrete
data to obtain the IC (dQ/dV ) and DV (dV/dQ) curves (Feng
et al., 2020). An example of a charge-voltage curve and the
corresponding IC (dQ/dV ) curve is shown in Figure 1, illus-
trating that flat parts of the charge-voltage curve appears as
peaks in the dQ/dV curve.

Figure 1. A simple example of an incremental capacity curve.
Plateaus in the charge-voltage curve correspond to peaks in
the IC curve

Such curves may be estimated in different ways, including
curve fitting, parametric models and machine learning meth-
ods (Han, Feng, et al., 2019; Weng, Sun, & Peng, 2013;
Y. Li, Abdel-Monem, et al., 2018; He, Wei, Bian, & Yan,
2020). Various smoothing techniques can also be applied to
obtain smooth curves from noisy measurements (Jiang, Dai,
& Wei, 2020). Having established the curves, various ways
of extracting features can be tried in order to regress capac-
ity degradation on the selected features (X. Li, Wang, Zhang,
Zou, & Dorell, 2019; Jiang et al., 2020; Tang et al., 2018;
C. Lin, Cabrera, Yu, Yang, & Tsui, 2020; Riviere, Sari, Venet,
Meniere, & Bultel, 2019; L. Zheng, Zhu, Lu, Wang, & He,
2018), e.g. using support vector regression (Weng, Cui, Sun,
& Peng, 2013), linear models (Jiang et al., 2020). A cur-
rent interrupt technique is introduced to evaluate the cell re-
sistance in order to account for the effect of different C-rates
in ICA in (Fly & Chen, 2020).

A somewhat similar method based on charge and discharge
data estimates the probability density function of voltages
during a discharge cycle by way of kernel density fitting
of discrete voltage measurements (Feng et al., 2013). This
method is referred to as the pdf-method and is a simpli-
fied variant of ICA where the need to fit a curve to the
charge/discharge data are eliminated. Similarly as with
ICA, the probability density function will exhibit clear peaks
around voltage plateaus, that is, voltages that occur more fre-
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quently during a charge or discharge cycle, and the idea is
that the state of the battery can be inferred by these peaks.A
fusion of Coulomb counting and differential voltage analysis
is proposed in (S. Zhang, Guo, Dou, & Zhang, 2020) as a
model-free approach to obtain SOH estimation from constant
current discharge data.

2.2.4. Other Direct Measurement Techniques

A differential thermal voltammetry approach is proposed in
(B. Wu et al., 2015), where voltage and temperature mea-
surements in galvanostatic operations are used to model state
of health. This allows shorter measurement time than slow
rate cyclic voltammetry analysis (Stiaszny, Ziegler, Krauß,
Schmidt, & Ivers-Tiffée, 2014; Stiaszny, Ziegler, Krauß,
Zhang, & Ivers-Tiffée, 2014). A differential heat analysis
based on measuring gradient heat flux and temperature after
discharge is proposed for SOH estimation in (Murashko et al.,
2019). State of health estimation based on the Ampere-hour
throughput – voltage curve and fitting a parametric curve to
these is proposed in (Le & Tang, 2011).

2.3. State-Space Models with Observers

A different approach to battery modelling relies on models
that approximate the battery dynamics. Typically, these may
be referred to as state-space models where sensor data can be
used to estimate model parameters corresponding to under-
lying unobservable states using so-called observers such as
various variants of the Kalman filter or particle filters. Two
main classes of such models are equivalent circuit models
and electrochemical models. Such models may also be com-
bined with experimental methods or direct measurements and
data-driven methods to estimate state parameters and state of
health. Pure data-driven models can also be established, such
as the local model network (LMN) presented in (Hametner,
Jakubek, & Prochazka, 2018), where a set of local regression
models are used to establish a non-linear battery model. A
Brownian motion model with drift was proposed in (Dong,
Yang, Wei, Wei, & Tsui, 2020) to model battery degradation
as a hidden state model based on observed health indices (that
could be capacity loss or resistance increase).

Equivalent circuit models (ECM) describe the voltage-current
characteristics of a battery by a model of an electrical cir-
cuit with different elements such as resistors and capacitors
in different series- and parallel configurations. Having estab-
lished a ECM for the battery, the state of the battery is de-
scribed by the battery model parameters. These are typically
unobserved, but may be estimated based on measurements
using various optimization techniques such as different vari-
ants of least squares methods. Various forms of constrained
and regularized optimization may be employed to avoid un-
reasonable parameter estimates (Tian, Wang, Chen, & Fang,
2020) and forgetting factors can be used to avoid saturation

problems by giving less weight to previous data compared
to more recent ones (L. Chen, Lü, Lin, Li, & Pan, 2018).
Model parameters are typically changing dynamically over
time and observers such as Kalman filter and particle filters
can be used to dynamically update model parameters and un-
observed model states. Extensions of the Kalman filter to
handle non-linear state transition and observation models in-
clude the extended Kalman filter and the unscented Kalman
filter (see e.g. (Plett, 2004a, 2004b, 2004c)). The effect of
temperature may be included in such models by coupling
the ECM with an energy balance or thermal model, see e.g.
(Karlsen et al., 2019; Bian, Liu, Yan, Zou, & Zhao, 2020).
An ECM is used in (Ley & Orchard, 2021) to adapt a state-
space model to learn a polarising impedance surface used for
capacity degradation modelling.

Electrochemical models typically consist of a simplified set
of electrochemical equations that model the transport of
charge between the positive and negative electrode in the bat-
tery cells based on the underlying physics. They describe the
charge flows through the electrolyte and voltage drops at the
cathode, anode and separator of the battery cells and typically
include a set of differential equations, several model param-
eters, model states and some measurable model output. The
model parameters are typically identified from battery dimen-
sions and chemistry or are estimated based on data. Examples
of such electrochemical models are given in (Bole, Kulkarni,
& Daigle, 2014; Daigle & Kulkarni, 2013; Bi, Yin, & Choe,
2020; C. Lin, Xing, & Tang, 2017). Battery ageing and degra-
dation can be modelled by changes in model parameters de-
scribing e.g. the internal resistance and charge capacity of the
battery.

2.4. Regression Type Models

Regression model range from simple linear regression mod-
els assuming a linear relationship between a set of explana-
tory variables and a response variable to complex machine-
learning (ML) type of regression models for more compli-
cated and non-linear relationships. One advantage of com-
plicated models is that more accurate models may be con-
structed when accounting for non-linearities. However, a par-
simonious model can also be preferred as it will be less likely
to overfit training data and be more easily interpreted. In gen-
eral, in order to use regression type models there is a need for
representative training data so that the model can learn the re-
lationship between the input variables and the response. For
batteries, this means that battery test data is needed, where
both the explanatory variables and the response is measured,
typically based on laboratory tests. However, it is uncertain
how representative the typical lab test data are for the degra-
dation caused by more random duty cycles experienced in the
field.

Simple linear regression models are proposed in (D. Wang,
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Kong, Yang, Zhao, & Tsui, 2020; Huang, Tseng, Liang,
Chang, & Pecht, 2017; Severson et al., 2019; Tang et al.,
2018), and different regression models for SOH based on
polynomial functions of cycle number as the only variable
and polynomial and exponential functions of fully discharged
voltage and internal resistance are compared in (Tseng,
Liang, Chang, & Huang, 2015). A kernel ridge regression
model is suggested for SOH estimation in (Y. Li, Sheng,
Cheng, Stroe, & Teodorescu, 2020). The relationship be-
tween capacity, accumulated charge and ranges of state of
charge during cycling expressed in Eq. (3) is formulated as a
regression problem in (Plett, 2011), where the total capacity
is a regression coefficient between measured changes in state
of charge (predictor) and accumulated charge obtained by
Coulomb counting (response). A similar approach framing
maximum capacity estimation as a total least square problem
is taken in (T. Kim et al., 2015), where a Rayleigh quotient-
based algorithm is employed to estimate capacity recursively.

Three data-driven methods for SOH estimation are compared
in (Berecibar, Devriendt, et al., 2016), i.e. a linear regres-
sion model based on ordinary least squares, a multilayer per-
ceptron neural network and a support vector machine. It is
emphasized that the linear model is more comprehensible
but that the neural network provides slightly more robust re-
sults. Machine learning regression models proposed in the
literature include support vector regression (Z. Deng et al.,
2017; D. Yang, Wang, Pan, Chen, & Chen, 2018; Klass,
Behm, & Lindberg, 2014; Weng, Cui, et al., 2013; X. Li,
Yuan, & Wang, 2020b; Z. Wang, Zeng, Guo, & Qin, 2018;
Nuhic, Terzmehic, Soczka-Guth, Buchholz, & Dietmayer,
2013; Nuhic, Bergdolt, Spier, Buchholz, & Dietmayer, 2018;
Shu, Li, Zhang, et al., 2020; Y. Deng et al., 2019; Shu, Li,
Shen, et al., 2020; Zhao, Qin, Zhao, & Feng, 2018; Harting
et al., 2018; W. Pan, Chen, Zhu, Tang, & Wang, 2020), rel-
evant vector machines (Guo, Cheng, & Yang, 2019; Nuhic
et al., 2018), different variants of artificial neural networks
(ANN) (You, Park, & Oh, 2016; Y. Zhang, Xiong, He, Qu,
& Pecht, 2019a; S. Zhang et al., 2019; Naha et al., 2020;
Sbarufatti, Corbetta, Giglio, & Cadini, 2017), extreme learn-
ing machines (H. Pan, Lü, Wang, Wei, & Chen, 2018; Y. Ma,
Wu, Guan, & Peng, 2020; T. Xu, Peng, & Wu, 2021), recur-
rent neural networks (Kwon et al., 2020; P. Li et al., 2020;
Ungurean, Micea, & Cârstoiu, 2020), probabilistic neural
networks (H.-T. Lin, Liang, & Chen, 2013), deep learning
(Khumprom & Yodo, 2019; Fan, Xiao, Li, Yang, & Tang,
2020; S. Shen, Sadoughi, Chen, Hong, & Hu, 2019; W. Li et
al., 2021), Gaussian processes regression (Richardson, Birkl,
Osborne, & Howey, 2019; Richardson, Osborne, & Howey,
2019; Khaleghi, Firouz, Van Mierlo, & Van den Bossche,
2019; Lucu et al., 2020b; X. Li, Yuan, & Wang, 2020a) and
random forests (Z. Chen, Sun, Shu, Shen, & Xiao, 2018;
Y. Li, Zou, et al., 2018; H. Xu, Peng, & Su, 2018; Lemprecht,
Riesterer, & Steinhorst, 2020; Song, Fei, & Xia, 2020).

The capacity of batteries is not measured directly by sensors
and are therefore not available for each cycle in online bat-
tery data. If available at all, capacities will only be available
for limited cycles. This raises the need for semi-supervised
learning, as addressed in (Yu, Yang, Wu, Tang, & Dai, 2020).
In order to address the problem of insufficient training data,
concepts of transfer learning and ensemble learning are incor-
porated in (S. Shen, Sadoughi, Li, Wang, & Hu, 2020).

2.5. Time-Series Models

Time-series models represent a different approach to mod-
elling capacity fade. Rather than estimating capacity and state
of health by regressing on some explanatory variables, time-
series models estimate capacity based on previous observed
capacities and model the serial dependence in observed ca-
pacities. Hence, based on a history of capacity measure-
ments, current and future capacity values can be estimated.
Typically, time-series models can be used for forecasting and
predicting remaining useful life of batteries. Different types
of classical time-series models are proposed in the litera-
ture for modelling battery capacity, including nonlinear au-
toregressive (AR) models (Liu et al., 2014), AR model with
covariates in multiple-change-point linear model (C.-P. Lin
et al., 2020) and autoregressive integrated moving average
(ARIMA) models (Zhou & Huang, 2016) and models based
on Wiener processes (X. Xu et al., 2019; D. Shen, Wu, Kang,
Guan, & Peng, 2021).

Time series based on more advanced ML models have also
been proposed, e.g. based on recurrent neural networks
(X. Li, Zhang, Wang, & Dong, 19; G. Ma et al., 2019; Un-
gurean et al., 2020), and Gaussian processes (L. Li, Wang,
Chao, Zhou, & Xie, 2016; X. Li et al., 2020a; X. Li, Wang,
& Yan, 2019).

Notwithstanding several approaches where time-series mod-
els have been used for SOH prediction, such models gener-
ally project future values based on historical observations of
the capacity, rather than regressing capacity on other explana-
tory variables. Hence, such models are believed to be more
relevant for prognostics applications than for diagnostics and
such methods are deemed less relevant for estimating SOH of
maritime battery systems based on sensor measurements.

2.6. Survival Type Models

Survival and event history modelling is a separate branch of
statistics that are used to model time-to-event data. If for ex-
ample a battery’s end of life is regarded as the event to be
modelled, one could construct probabilistic models for the
time until this event, determined by a set of covariates. How-
ever, one prerequisite for establishing such modes is the avail-
ability of sufficient amount of run-to-failure data, where the
time until EOL is observed for a number of batteries or bat-

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

tery cells. Such data could typically be collected from similar
batteries in operations to reflect realistic load profiles.

Survival analysis modelling are applied to lithium-ion batter-
ies for end-of-performance modelling in (Y.-F. Wang, Tseng,
Lindqvist, & Tsui, 2019). A trend-renewal process is used on
accelerated testing data to predict end of performance. How-
ever, this model relies on observed capacity ratios for pro-
jecting capacity fade and estimate end of performance, which
will typically not be available for maritime battery systems.

2.7. Cumulative Damage Models

Cumulative damage models are often used for modelling of
structural fatigue, where the structural deterioration is mod-
elled as a cumulative sum of different load cycles. Fatigue life
of a structure is typically given in terms of number of stress
cycles of a specific amplitude. For structural components ex-
posed to a complex, random sequence of loads, the fatigue
damage can be estimated by reducing the complex loading to
a series of simple cyclic loadings using techniques such as
rainflow counting and then form a fatigue damage spectrum
as a histogram of cyclic stresses. The degree of cumulative
damage for each stress level can then be calculated from an
S-N curve, that can be established based on laboratory tests.
Often, simple parametric functions can be fitted to the test
data to allow interpolation on the S-N curve.

For battery cells, if one were able to construct curves or sur-
faces similar to S-N curves that determines the contribution
to battery degradation from individual charge/discharge cy-
cles of specified DOD/SOC range, temperature and C-rate
one could imagine that this could be used to calculate state
of health based on experienced load profiles and some form
of cycle counting such as rainflow counting. However, an ex-
tensive set of laboratory tests would presumably be needed,
where run-to-failure tests would need to be performed for a
number of different cycle amplitudes and conditions.

Cumulative damage-type modelling of battery degradation
based on so-called load collectives are proposed in (Nuhic
et al., 2013, 2018; You et al., 2016), and approaches based on
rainflow counting are suggested in (B. Xu, Oudalov, Ulbig,
Andersson, & Kirschen, 2018; S. Li, He, Su, & Zhao, 2020)

One potential issue with cumulative damage models is that
they rely on the complete operational history of the batteries.
If there are long periods with missing data, the histograms,
distributions or collectives may be biased and will miss infor-
mation from the period where data are missing. Hence, this
puts strict requirements on the reliability of the data collec-
tion procedures and on allowable downtime. Nevertheless,
for complete time histories cumulative damage models are
found to perform well and may be attractive alternatives for
modelling battery degradation and state of health.

2.8. Empirical/Analytical Models

Some methods for SOH estimation are based on fitting em-
pirical models to various measurement data. The aim of such
models is to capture relationships between battery state of
health and various stress factors, such as operation time, tem-
perature and operational loads. These models are typically
based on test data and the empirical relationships can be used
during operation to model state of health and capacity loss of
the battery.

Analytical models proposed in the literature include numer-
ous forms of relationships between capacity fade and num-
ber of cycles/time, such as linear (Belt, Utgikar, & Bloom,
2011), square-root (F. Yang, Song, Dong, & Tsui, 2019),
power-law (Schmalstieg, Käbitz, Ecker, & Sauer, 2014; Han,
Ouyang, Lu, & Li, 2014), exponential (X. Zhang, Miao, &
Liu, 2017; Tang et al., 2019; Perez et al., 2018), polyno-
mial (Micea, Ungurean, Cârstoiu, & Groza, 2011), sigmoid
(Johnen et al., 2020) or a combination of these (Xing, Ma,
Tsui, & Pecht, 2013). More complicated models also ac-
count for differences in C-rates and temperatures (Ji et al.,
2020; Singh, Chen, Tan, & Huang, 2019). Other analyt-
ical model may be based on other relationships, such as a
current-time constant (J. Yang, Xia, Huang, Fu, & Mi, 2018),
moved charge (Barcellona & Piegari, 2020), the Eyring law
(Redondo-Iglesias, Venet, & Pelissier, 2017) or a combina-
tion of several features (Kandasamy, Badrinarayanan, KAna-
marlapudi, Tseng, & Soong, 2017; Schimpe et al., 2018; Nau-
mann, Spingler, & Jossen, 2020; Bian et al., 2020).

The coulombic efficiency (CE) is used to establish a model
for actual reversible capacity in (F. Yang et al., 2019). It is
assumed that the coulombic efficiency describes the decrease
in reversible capacity in successive cycles, Ck = Ck−1CEk,
where Ci denotes the reversible capacity at cycle i and CEi

is the coulombic efficiency of cycle i. Then, assuming that
the coulombic efficiency is constant over cycles, one arrives
at the following, by iterating over cycles since the initial ca-
pacity C0: Ck = C0 (CE1CE2 · · ·CEk) ≈ C0CEk, see
also (Arachchige, Perinpanayagam, & Jaras, 2017). Hence,
they propose the following parametric model for reversible
capacity

Ck = α0CEk + α1. (4)

α0 and α1 are considered model parameters, and also CE is
regarded as a model parameter, reflecting that it is difficult to
measure CE accurately. This model is compared to a simple
empirical model based only on cycle number; Ck = β0

√
k +

β1, and is found to perform better.

2.9. Other Approaches

Some other approaches to SOH estimation that does not di-
rectly belong to any of the categories above have been sug-
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gested in the literature, including discrete wavelet transform
(DWT) based approaches (J. Kim & Cho, 2014; Cai, Yang,
Deng, Zhao, & Deng, 2018), geometrical approaches (Lu,
Tao, & Fan, 2014), look-up tables (Dubarry et al., 2017) and
a visual cognition approach (Cheng, Tao, & Yang, 2017).

3. DATA-DRIVEN MODELS FOR RUL PREDICTION

SOH estimation is an important part of battery diagnostics
and can inform about the current state of the battery. RUL
prediction, on the other hand projects state of health into the
future in a prognostic setting and relies on some assump-
tion on future operating conditions and loads. Hence, even
though some methods for SOH estimation can also possibly
be used for RUL prediction, different types of approaches
are more specifically focusing on the prognostic part of bat-
tery health estimation. Several reviews on RUL for batteries
have been presented in the literature (L. Wu et al., 2016; Su
& Chen, 2017; Y. Li et al., 2019), and approaches for RUL
prediction include electrochemical models (Y. Zhang, Xiong,
He, Qu, & Pecht, 2019b), equivalent circuit models (Y. Ma,
Yang, Zhou, & Chen, 2019), empirical models (Sarasketa-
Zabala et al., 2016), particle filters (L. Chen, Wang, et al.,
2020; L. Chen, An, Wang, Zhang, & Pan, 2020), data trans-
formations (Y. Zhang, Xiong, He, & Pecht, 2019a; Peng et
al., 2020), regression models (S. Zhang, Guo, & Zhang, 45;
F. Yang, Wang, Xu, Huang, & Tsui, 2020; Y. Zhang, Xiong,
He, & Pecht, 2019b), ML models (W. Li, Jiao, Du, Fan, &
Zhu, 2019; L. Ren et al., 2018; H. Yang et al., 2020), time-
series models (Razavi-Far, Chakrabarti, Saif, Zio, & Palade,
2018; Razavi-Far, Chakrabarti, Saif, & Zio, 2019) and models
based on Brownian motion with drift (D. Wang, Zhao, Yang,
& Tsui, 2017; D. Wang & Tsui, 2018; H. Zhang, Mo, Wang,
& Miao, 2020). Various health indicators are also proposed
for use in prognostics of battery systems, see e.g. (Zhou,
Huang, Chen, & Tao, 2016; Sun, Hao, Pecht, & Zhou, 2018).

Machine learning methods are used for identifying and pre-
dicting knee-points and knee-onset in capacity degradation
curves in (Fermín-Cueto et al., 2020). Based on knee-point
predictions, the cell’s expected cycle lives are estimated and
classified as short, medium or long.

4. DISCUSSION

4.1. Data Availability and Requirements

Data-driven models need training data to learn relationships
between input variables and responses, and the availability of
data determines both what types of models can be used and
the accuracy of the model predictions. Often, training data are
gathered by laboratory experiments and used to train a model
that can be used in an operational setting. However, if a suf-
ficient amount of operational data is available, it may also be
possible to train models based on such data without requiring
extensive laboratory testing, as suggested by e.g. (Lucu et al.,

2020a, 2020b). The origin of the training data notwithstand-
ing, available training data needs to be of sufficient quality
and quantity, sufficiently representative, sufficiently complete
and sufficiently relevant in order to train usable data-driven
models, and the availability of such data is a crucial prereq-
uisite for relying on data-driven models for battery capacity
and state of health estimation.

Also, it is important to understand what type of operational
data will be available throughout the lifetime of the battery
system. It is safe to assume that data such as various cur-
rent, voltage and temperature measurements will be available
for the SOH algorithms, but temporal and spatial resolution
may vary. Furthermore, the reliability and accuracy of de-
rived quantities such as the state of charge will need to be
assured. It needs to be determined whether the data automat-
ically collected are sufficient, or if additional specific mea-
surements are required, e.g. periodic tests with set load pat-
terns and fixed conditions, or particular tests such as pulse
tests and impedance or resistance measurements. From a
practical point of view, it may be desirable to only rely on
continuously measured data streams, but results could be im-
proved if additional tests are carried out.

The data quality is a crucial issue for data-driven methods,
and results can only be as good as the data allows. Many
of the continuous variables will most likely be discretized in
both time and value, and additional measurement noise will
always be present. This could influence results in different
degrees, and some denoising and preprocessing of the data
will probably be needed. For example, for methods based
on ICA/DVA relying on the differentiation of discrete signals
will certainly need some type of smoothing to perform well.
Hence, proper approaches to preprocessing and denoising of
the data signals will need to be considered as well as the ac-
tual data-driven models.

Additional factors that may be relevant for maritime batteries
have not been well studied in the literature, such as the ef-
fect of humidity, airborne salinity, vibrations and the constant
movement of the ship. Such information may not be avail-
able and it should be investigated to what extent such factors
influence battery degradation.

4.2. Synthetic and Realistic Load Profiles

Some approaches to SOH modelling assumes that batteries
are used in a controlled way, at near-constant temperatures,
with constant charge and discharge C-rates and systemati-
cally cycled within a specified voltage range. Indeed, train-
ing data obtained from laboratory tests will often be collected
under such controlled situations. However, for maritime bat-
tery systems, as well as for many other applications, this is
hardly the case and batteries are typically cycled only par-
tially and under highly variable loads and environments (You
et al., 2016).
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Charging is often performed with a constant current constant
voltage procedure, with deterministic rather than stochastic
current and voltage profiles in the different steps. Hence,
methods that considers features from charging profiles may
be preferred to methods relying on discharge features. How-
ever, typical charging patterns may vary and extensive use of
partial fast-charging may deviate from normal charging rou-
tines under very similar conditions.

This review have seen several approaches that extracts fea-
tures from partial charging curves. Hence, such features are
believed to be useful and it is believed that such features can
be used to estimate SOH for maritime battery systems. How-
ever, the effect of dynamically varying temperatures and cur-
rents must be taken into account also for features based on
partial cycling data, and this may not be straightforward.

4.3. Statistical and Machine Learning Models

Some aspects to consider when selecting a statistical or a ma-
chine learning model are predictability and interpretability.
Typically, more advanced machine learning models are more
flexible and can accommodate complicated relationships be-
tween the input and output variables and may have higher
predictive power. However, such models are often referred to
as black box models in the sense that it is difficult to under-
stand the predictions and difficult to interpret the relationship.
Furthermore, complicated models may fail to generalize and
are more prone to overfitting than more simplistic models.

Another aspect is how to handle uncertainty. Whereas some
models provide predictive distributions, most machine learn-
ing model only give point estimates. Obviously, estimation of
the uncertainty can be useful, but often comes at a computa-
tional cost. Hence, selecting a statistical or a machine learn-
ing model for SOH estimation is a trade-off between accu-
racy, generalizability, interpretability and computational cost.

One aspect of missing data is that data streams will typically
not contain capacity or SOH for all data points. Hence, mod-
els that can be applied with no or limited labelled data may be
needed, indicating that methods from unsupervised or semi-
supervised learning could be relevant (Yu et al., 2020).

4.4. Feature Extraction and Selection

Different modelling techniques require different types of fea-
tures to explain battery degradation and different training
data. For models to be useful it is also important that the
selected features will be collected during operation. Hence,
there is typically a need for features that can be extracted
from data readily available from the battery management sys-
tem, such as current, voltage and temperature measurements.
From such raw data, derived features such as state of charge,
number of cycles and rest time at different SOC/voltage level
can also be extracted. This review has showed that there are

countless approaches to extract features, sometimes referred
to as health indicators, for SOH modelling, and which fea-
tures are used to train the data-driven models may typically be
more important than the actual type of statistical/ML model
to employ.

4.5. Models Based on Complete Loading History vs.
Snapshot Methods

Some of the models reviewed in this paper relies on the whole
operating history of the battery cells in order to estimate SOH,
whereas others estimate SOH based on brief snapshots. Cu-
mulative damage models and empirical/semi-empirical mod-
els relating SOH to number of cycles and other stress fac-
tors such as temperature, C-rate and SOC swing are examples
of the former. Regression models on features extracted from
partial charging curves or incremental capacity curves are ex-
amples of the latter. Both approaches have some advantages
and disadvantages.

Cumulative damage models are attractive, since they can be
used to model the accumulated degradation effect from the
experienced operational profile. In essence, such models es-
tablish a relationship between the load profile or individual
cycle and the change in SOH, the ∆SOH. The actual SOH
after n cycles can then easily be estimated as SOHn =
SOH0 +

∑n
i=1 ∆SOHi, where SOH0 is the initial capac-

ity. Moreover, if a future duty cycle can be assumed, such
an SOH estimation model can also be used for prognostics
and RUL prediction. However, one disadvantage of this ap-
proach is that the complete operational profile is needed, from
the first to the current cycle. Periods of missing data will ef-
fectively render such models inaccurate. Possible remedies
could be to impute values for missing data, but this is proba-
bly only possible for relatively short periods of missing data.

Methods based on regular snapshots of the data streams are
very attractive in the sense that it does not require access to
continuous data streams, or alternatively, accumulated data in
the form of histograms or collectives representing the com-
plete operation history. With such models, it would suffice
to get batches of data at certain intervals, and if the mod-
els are able to reliably extract battery capacity and SOH from
such snapshots, the cumulative effect since the previous batch
would implicitly be estimated. Thus, if such models are found
to perform well enough, they may be the preferred approach
for SOH verification of marine battery systems.

4.6. SOH Estimation and RUL Prediction

Estimation of state of health (SOH) and prediction of remain-
ing useful life (RUL) of batteries can be considered as two
sides of the same coin. SOH estimation aims at describing the
current degradation state of the battery, whereas RUL predic-
tions projects future degradation of the battery until it reaches
its end of life. Hence, both depends on a method for describ-
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ing ageing as a function of various factors such as calendar
time, cycle time and operating conditions related to tempera-
ture, C-rate and SOC levels. However, for RUL there is the
additional need of predicting future conditions and usage pat-
terns. For battery systems operating under variable loads, this
may be challenging and some additional assumptions need to
be made.

Some of the methods described above for SOH estimation
cannot easily be adopted to predict RUL, and all methods
based on direct measurements such as Coulomb counting,
electrochemical impedance spectroscopy and incremental ca-
pacity analysis will be difficult to apply in a prognostics set-
ting. However, other methods will typically be more relevant
for RUL prediction than for SOH estimation, for example
different time series models and survival models. Cumula-
tive damage type of approaches, where degradation is mod-
elled based on cumulative effects of the load histories, on the
other hand, could presumably be adopted and used also for
RUL prediction, under some assumed future loading condi-
tions. Also, many of the empirical capacity fade models could
in principle be extended to predict remaining useful life of
batteries, i.e. to predict when capacity crosses a predefined
threshold.

The duty cycles and operating conditions of maritime bat-
tery systems will typically be unpredictable and depend on
weather and sea state conditions, loading conditions and pos-
sibly different voyage lengths and routes or different opera-
tions. However, one plausible assumption could be that past
operating history is representative for the future. This ap-
proach was suggested in (Nuhic et al., 2013). However, as
pointed out in (Severson et al., 2019), degradation mecha-
nisms are typically nonlinear and degradation during early-
life cell cycles may not be strongly correlated with degrada-
tion patterns in later cycles (Harris, Harris, & Li, 2017).

4.7. Cell vs. Module vs. Pack level

When establishing diagnostics methods for state of health es-
timation one need to consider whether to apply these on cell,
module or pack (string) level and the heterogeneity of the
cells within a module or a pack poses a challenge; cells within
a battery system will typically not degrade uniformly. Hence,
methods to identify cell differences are relevant.

SOH estimation at cell level could be aggregated to pack
level. For example, for cells connected in series with pas-
sive equalization, the available capacity of the entire string
will be determined by the capacity of the single cell with the
minimum capacity, and for series-connected cells with active
equalization, the available pack capacity is given by the av-
erage of the call capacities (Cordoba-Arenas, Onori, & Riz-
zoni, 2015). For parallel-connected cells the available capac-
ity will be given by the average cell capacity times the num-
ber of cells. However, earlier studies have shown that bat-

tery pack lives are typically shorter than single cell life due to
other degradation mechanisms (Y. Zheng, Ouyang, Lu, & Li,
2015). Even though most studies focus on single cell data,
several papers addresses SOH estimation of battery modules
and packs, see e.g. (Diao, Jiang, Zhang, Liang, & Pecht,
2017; C. Yang et al., 2020; Dubarry et al., 2019).

4.8. Effect of Battery Chemistry

Modelling approaches for a range of different battery types
and chemistries have been reviewed, without a lot of empha-
size on what type of batteries the various methods have been
applied to. It has tacitly been assumed that the data-driven
methods are agnostic to battery chemistry, in most cases,
and that different chemistries can be handled by changing
the model parameters or re-training models with appropriate
training data. However, it should be noted that some methods
may not be easily transferred to other battery chemistries, so
care should be taken when selecting a modelling approach for
a particular battery type. For example, it is generally known
that for lithium-iron-phosphate batteries (LFP), there is a flat
plateau in the SOC-OCV curve that renders voltage-based al-
gorithms and incremental capacity analysis difficult to apply
to such types of batteries (Z. Deng et al., 2016).

4.9. Verification and Validation

One important question for data-driven SOH estimation
methods is to what extent they can be verified and validated
to perform satisfactorily for the intended battery system. This
may require a standardized platform and extensive testing
data from actual degrading batteries, and the models would
need to be, somehow, verified and validated particularly for
each case.

It is noted that some particular methods may be prone to sys-
tematic under- or overestimation of actual capacity. For ex-
ample, SOH estimation based on Coulomb counting of partial
cycles - a technique that is utilized for maritime battery sys-
tems today - is likely to underestimate the capacity fade and
thereby overestimate the actual capacity (Stroe et al., 2018).
Such systematic biases for specific approaches are important
to understand and account for in order to obtain reliable esti-
mates of state of health and capacity.

5. SUMMARY AND CONCLUSION

This paper has presented a thorough literature review of re-
cent publications on data-driven state of health and capacity
modelling of lithium-ion battery systems. More than 300 sci-
entific papers have been reviewed and it is believed that this
review gives a fair overview of current state-of-the art in data-
driven SOH modelling.

Data-driven methods for SOH modelling can be categorized
into a few groups of approaches, i.e. direct measurement
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techniques, state-space models with observers, regression
type models, time-series models, survival type models, cumu-
lative damage models and empirical/analytical models. How-
ever, the distinction is not crisp, and several types of ap-
proaches are often combined. Some of these approaches are
deemed more relevant for maritime battery systems than oth-
ers. One desired feature is that it only needs information con-
tained in normal operational data. For example, time-series
models require time-series of capacity measurements that will
not be available, and survival type models need extensive life-
time data that cannot be expected to be available. State-space
models, either electrochemical models or equivalent circuit
models are typically used in BMS for SOC and SOH estima-
tion. However, from a class perspective the aim is to develop
means for independent verification of capacity/SOH estima-
tion made by the BMS, and it may therefore be advisable to
consider alternative modelling approaches. Hence, it is be-
lieved that a combination of direct measurement techniques,
regression models, empirical models and cumulative damage
models will be most relevant.

Direct measurement techniques include some approaches that
require particular hardware and might not be suitable for on-
line verification of SOH estimation. Moreover, direct capac-
ity estimation based on Coulomb counting requires specific
reference charge and discharge cycles, under specific condi-
tions which will not be observed during normal operations.
However, techniques based on partial charge or discharge in-
formation could be useful and will be explored further.

A large number of regression type models, ranging from sim-
ple linear regression models, to empirical/analytical models,
to highly complex machine learning models have been pro-
posed, establishing a relationship between capacity and dif-
ferent features extracted from the data. Perhaps more impor-
tant than what type of regression model to use is the selection
of features to use. Two fundamentally different approaches
can be taken, herein referred to as snapshot and cumulative
approaches. The cumulative approaches establish a relation-
ship between various stress factors and capacity degradation,
∆C, whereas the snapshot approach establishes a relationship
between observed features and actual capacity, C.

One disadvantage of cumulative models is the need for the
full operating history of the batteries. If parts of the history
is missing it will not be possible to estimate actual capacity
at a particular time. A huge advantage of snapshot models
is that capacity can be estimated based on only parts of the
continuous data-stream. This is believed to be a very promis-
ing feature of a method employed for regular verification of
online capacity estimation. However, such methods may re-
quire higher temporal resolution in the data in order to extract
the necessary features. If reliable such models can be estab-
lished, SOH can be verified based on regular batches of data.
However, challenges remains with respect to how the influ-

ence of temperature, variations in state of charge and current
can be incorporated into the models.

Notwithstanding many unresolved challenges; many of the
reviewed papers explicitly state that the problem of online
state-of-health estimation of lithium-ion batteries are far from
being solved, this paper gives some directions for further re-
search on data-driven estimation of battery state of health,
for the purpose of verifying capacity on maritime battery sys-
tems.
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