Elastodynamics based Modelling of Acoustic Emission for Earlier Bearing Damage Detection
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
It is crucial for many applications to detect bearing damage as early as possible to allow for scheduling of maintenance with lead times that minimize operational disruption. State of the practice is the detection of spalling but damage initiates prior to spalling as subsurface and surface cracks. Such damage is much harder to detect and to model. This study proposes a unique application of the nanofrictional Prandtl-Tomlinson model to predict macroscopic acoustic emission (AE) signals that occur at cracked interfaces under relative motion. The study integrates large deformation modelling of structures with elastodynamic simulations to investigate early AE signals generated under different bearing rotational speeds. Experimental studies are carried out to measure acoustic vibrations from metal-metal surface friction using fiber optic sensors and compared to those predicted by the model. Broad agreement of results highlights the validity of this framework.
How to Cite
##plugins.themes.bootstrap3.article.details##
Elastodynamics, Acoustic Emission, Bearing Damage Detection, Finite Element Analysis, Prandtl-Tomlinson Model
Al-Balushi, K. R., Addali, A., Charnley, B., & Mba, D. (2010, September). Energy Index technique for detection of Acoustic Emissions associated with incipient bearing failures. Applied Acoustics, 71(9), 812– 821. Retrieved 2024-02-23, from https://www .sciencedirect .com/science/article/ pii/S0003682X10000873 doi: 10 .1016 / j .apacoust.2010.04.006
Cockerill, A., Clarke, A., Pullin, R., Bradshaw, T., Cole, P., & Holford, K. (2016, November). Determination of rolling element bearing condition via acoustic emission. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(11), 1377–1388. Retrieved 2024-02-24, from https://doi.org/10.1177/ 1350650116638612 (Publisher: IMECHE) doi: 10.1177/1350650116638612
Faisal Haider, M., & Giurgiutiu, V. (2019, May). Theoretical and numerical analysis of acoustic emission guided waves released during crack propagation. Journal of Intelligent Material Systems and Structures, 30(9), 1318–1338. Retrieved 2024-02-24, from https:// doi.org/10.1177/1045389X18798948 (Publisher: SAGE Publications Ltd STM) doi: 10.1177/ 1045389X18798948
Fuentes, R., Dwyer-Joyce, R. S., Marshall, M. B., Wheals, J., & Cross, E. J. (2020, March). Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling. Renewable Energy, 147, 776– 797. Retrieved 2024-02-23, from https://www .sciencedirect .com/science/article/ pii/S0960148119312066 doi: 10.1016/j.renene .2019.08.019
Joseph, R., & Giurgiutiu, V. (2020, May). Acoustic emission (AE) fatigue-crack source modeling and simulation using moment tensor concept. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020 (Vol. 11379, pp. 214–225). SPIE. Retrieved 2024-02- 23, from https://www.spiedigitallibrary .org/conference-proceedings-of-spie/ 11379 / 113791J / Acoustic -emission -AE -fatigue -crack -source -modeling -and -simulation-using/10.1117/12.2559958 .full doi: 10.1117/12.2559958
Kiesel, P., Beck, M., Schmidt, O., Johnson, N., Bassler, M., Ecke, W., . . . Bartelt, H. (2007, October). Compact and fast interrogation unit for fiber Bragg grating sensors. In Photonics in the Transportation Industry: Auto to Aerospace (Vol. 6758, pp. 81–85). SPIE. Retrieved 2024-02-24, from https://www .spiedigitallibrary .org/ conference -proceedings -of -spie / 6758 / 67580A / Compact -and -fast -interrogation -unit -for -fiber -Bragg -grating -sensors / 10 .1117 / 12.734869.full doi: 10.1117/12.734869
Lu, H., Pavan Nemani, V., Barzegar, V., Allen, C., Hu, C., Laflamme, S., . . . Zimmerman, A. T. (2023, May). A physics-informed feature weighting method for bearing fault diagnostics. Mechanical Systems and Signal Processing, 191, 110171. Retrieved 2024-02-23, from https:// www .sciencedirect .com / science / article / pii / S088832702300078X doi: 10.1016/j.ymssp.2023.110171
Overton, G. (2011, January). FIBER-OPTIC-SENSORS: Miniature read-out sensor resolves wavelength changes to 50 fm. Retrieved 2024-02-24, from https :// www .laserfocusworld .com / detectors -imaging/article/16548058/ fiber -optic -sensors -miniature -read -out -sensor -resolves -wavelength -changes-to-50-fm
Singh, H., Pulikollu, R. V., Hawkins, W., & Smith, G. (2017, May). Investigation of Microstructural Alterations in Low- and High-Speed Intermediate-Stage Wind Turbine Gearbox Bearings. Tribology Letters, 65(3), 81. Retrieved 2024-02-24, from https://doi.org/ 10.1007/s11249-017-0861-5 doi: 10.1007/ s11249-017-0861-5
Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., & Tosatti, E. (2013, April). Modeling friction: From nanoscale to mesoscale. Reviews of Modern Physics, 85(2), 529– 552. Retrieved 2024-02-23, from http://arxiv .org/abs/1112.3234 (arXiv:1112.3234 [condmat]) doi: 10.1103/RevModPhys.85.529
Yu, X., Lin, X., Tan, H., Hu, Y., Zhang, S., Liu, F., . . . Huang, W. (2021). Microstructure and fatigue crack growth behavior of inconel 718 superalloy manufactured by laser directed energy deposition. International Journal of Fatigue, 143, 106005.
Yucesan, Y. A., & Viana, F. A. (2019). Wind turbine main bearing fatigue life estimation with physics informed neural networks. In Annual conference of the phm society (Vol. 11, pp. 1–14).
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.