Elastodynamics based Modelling of Acoustic Emission for Earlier Bearing Damage Detection

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 5, 2024
Anurag Bhattacharyya Krishnan Thyagarajan Jin Yan Kevin Pintong Qiushu Chen Joseph Lee Peter Kiesel Kai Goebel

Abstract

It is crucial for many applications to detect bearing damage as early as possible to allow for scheduling of maintenance with lead times that minimize operational disruption. State of the practice is the detection of spalling but damage initiates prior to spalling as subsurface and surface cracks. Such damage is much harder to detect and to model. This study proposes a unique application of the nanofrictional Prandtl-Tomlinson model to predict macroscopic acoustic emission (AE) signals that occur at cracked interfaces under relative motion. The study integrates large deformation modelling of structures with elastodynamic simulations to investigate early AE signals generated under different bearing rotational speeds. Experimental studies are carried out to measure acoustic vibrations from metal-metal surface friction using fiber optic sensors and compared to those predicted by the model. Broad agreement of results highlights the validity of this framework.

How to Cite

Bhattacharyya, A., Thyagarajan, K. ., Yan, J., Pintong, K., Chen, Q., Lee, J., Kiesel, P., & Goebel , K. . (2024). Elastodynamics based Modelling of Acoustic Emission for Earlier Bearing Damage Detection. Annual Conference of the PHM Society, 16(1). https://doi.org/10.36001/phmconf.2024.v16i1.3971
Abstract 173 | PDF Downloads 95

##plugins.themes.bootstrap3.article.details##

Keywords

Elastodynamics, Acoustic Emission, Bearing Damage Detection, Finite Element Analysis, Prandtl-Tomlinson Model

References
Abraham, J. C., Cruz, G., Cubela, S., Lajous, T., Rowshankish, K., Tiwari, S., & Zemmel, R. (2022, Oct). Digital twins: From one twin to the enterprise metaverse. McKinsey Company. Retrieved from https://www.mckinsey .com/capabilities/mckinsey -digital/ our -insights/digital -twins -from -one -twin-to-the-enterprise-metaverse

Al-Balushi, K. R., Addali, A., Charnley, B., & Mba, D. (2010, September). Energy Index technique for detection of Acoustic Emissions associated with incipient bearing failures. Applied Acoustics, 71(9), 812– 821. Retrieved 2024-02-23, from https://www .sciencedirect .com/science/article/ pii/S0003682X10000873 doi: 10 .1016 / j .apacoust.2010.04.006

Cockerill, A., Clarke, A., Pullin, R., Bradshaw, T., Cole, P., & Holford, K. (2016, November). Determination of rolling element bearing condition via acoustic emission. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(11), 1377–1388. Retrieved 2024-02-24, from https://doi.org/10.1177/ 1350650116638612 (Publisher: IMECHE) doi: 10.1177/1350650116638612

Faisal Haider, M., & Giurgiutiu, V. (2019, May). Theoretical and numerical analysis of acoustic emission guided waves released during crack propagation. Journal of Intelligent Material Systems and Structures, 30(9), 1318–1338. Retrieved 2024-02-24, from https:// doi.org/10.1177/1045389X18798948 (Publisher: SAGE Publications Ltd STM) doi: 10.1177/ 1045389X18798948

Fuentes, R., Dwyer-Joyce, R. S., Marshall, M. B., Wheals, J., & Cross, E. J. (2020, March). Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling. Renewable Energy, 147, 776– 797. Retrieved 2024-02-23, from https://www .sciencedirect .com/science/article/ pii/S0960148119312066 doi: 10.1016/j.renene .2019.08.019

Joseph, R., & Giurgiutiu, V. (2020, May). Acoustic emission (AE) fatigue-crack source modeling and simulation using moment tensor concept. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020 (Vol. 11379, pp. 214–225). SPIE. Retrieved 2024-02- 23, from https://www.spiedigitallibrary .org/conference-proceedings-of-spie/ 11379 / 113791J / Acoustic -emission -AE -fatigue -crack -source -modeling -and -simulation-using/10.1117/12.2559958 .full doi: 10.1117/12.2559958

Kiesel, P., Beck, M., Schmidt, O., Johnson, N., Bassler, M., Ecke, W., . . . Bartelt, H. (2007, October). Compact and fast interrogation unit for fiber Bragg grating sensors. In Photonics in the Transportation Industry: Auto to Aerospace (Vol. 6758, pp. 81–85). SPIE. Retrieved 2024-02-24, from https://www .spiedigitallibrary .org/ conference -proceedings -of -spie / 6758 / 67580A / Compact -and -fast -interrogation -unit -for -fiber -Bragg -grating -sensors / 10 .1117 / 12.734869.full doi: 10.1117/12.734869

Lu, H., Pavan Nemani, V., Barzegar, V., Allen, C., Hu, C., Laflamme, S., . . . Zimmerman, A. T. (2023, May). A physics-informed feature weighting method for bearing fault diagnostics. Mechanical Systems and Signal Processing, 191, 110171. Retrieved 2024-02-23, from https:// www .sciencedirect .com / science / article / pii / S088832702300078X doi: 10.1016/j.ymssp.2023.110171

Overton, G. (2011, January). FIBER-OPTIC-SENSORS: Miniature read-out sensor resolves wavelength changes to 50 fm. Retrieved 2024-02-24, from https :// www .laserfocusworld .com / detectors -imaging/article/16548058/ fiber -optic -sensors -miniature -read -out -sensor -resolves -wavelength -changes-to-50-fm

Singh, H., Pulikollu, R. V., Hawkins, W., & Smith, G. (2017, May). Investigation of Microstructural Alterations in Low- and High-Speed Intermediate-Stage Wind Turbine Gearbox Bearings. Tribology Letters, 65(3), 81. Retrieved 2024-02-24, from https://doi.org/ 10.1007/s11249-017-0861-5 doi: 10.1007/ s11249-017-0861-5

Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., & Tosatti, E. (2013, April). Modeling friction: From nanoscale to mesoscale. Reviews of Modern Physics, 85(2), 529– 552. Retrieved 2024-02-23, from http://arxiv .org/abs/1112.3234 (arXiv:1112.3234 [condmat]) doi: 10.1103/RevModPhys.85.529

Yu, X., Lin, X., Tan, H., Hu, Y., Zhang, S., Liu, F., . . . Huang, W. (2021). Microstructure and fatigue crack growth behavior of inconel 718 superalloy manufactured by laser directed energy deposition. International Journal of Fatigue, 143, 106005.

Yucesan, Y. A., & Viana, F. A. (2019). Wind turbine main bearing fatigue life estimation with physics informed neural networks. In Annual conference of the phm society (Vol. 11, pp. 1–14).
Section
Technical Research Papers

Most read articles by the same author(s)

1 2 3 4 5 > >>