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ABSTRACT

It is crucial for many applications to detect bearing damage as
early as possible to allow for scheduling of maintenance with
lead times that minimize operational disruption. State of the
practice is the detection of spalling but damage initiates prior
to spalling as subsurface and surface cracks. Such damage
is much harder to detect and to model. This study proposes
a unique application of the nanofrictional Prandtl-Tomlinson
model to predict macroscopic acoustic emission (AE) sig-
nals that occur at cracked interfaces under relative motion.
The study integrates large deformation modelling of struc-
tures with elastodynamic simulations to investigate early AE
signals generated under different bearing rotational speeds.
Experimental studies are carried out to measure acoustic vi-
brations from metal-metal surface friction using fiber optic
sensors and compared to those predicted by the model. Broad
agreement of results highlights the validity of this framework.

1. INTRODUCTION

It is forecast that by 2026, the digital twin market will grow to
a size of more than $ 48 billion (Abraham et al., 2022). With
the advent of the industry 4.0, development of digital twins
has been under a considerable amount of focus to avoid faults
or breakdowns that can affect the operational output and qual-
ity. Through digital twinning, manufacturers can both tweak
designs and monitor assets so they can predict when any parts
might need replacing. As a result, there has been an in-
creased shift from reactive maintenance to proactive mainte-
nance. One of the most important machinery components is
the bearing which is critical to operation of virtually all rotat-
ing equipment. The current state-of-the-art in damage detec-
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tion of bearings leaves a gap between the initiation of fatigue
cracks and the eventual detection of crack networks. Closing
this gap has the potential to save costs related to maintenance,
labor, and downtime.

Studies have shown that due to repeated loading, high-cycle
fatigue initiates subsurface cracks in the bearing inner-race.
These subsurface cracks eventually form a crack network
leading to spalling. The current state-of-the-art techniques
can detect AE signals generated mostly after the formation of
crack network. Currently used techniques to determine bear-
ing failure rely on monitoring acceleration, velocity, or dis-
placement. Low frequency eddy current measurements (0-6
kHz) rely on displacement detection, laser doppler vibrom-
eters (2 Hz – 12 kHz) measure velocity differences, while
AE detection (50-300 kHz), shock pulse, accelerometers, and
spike energy detection (20 kHz – 350 kHz) detect accelera-
tion changes due to bearing damage. It is posited that early
signs crack initiation are manifested at higher frequencies rel-
ative to signals generated by spalling. Therefore, one requires
the capacity to measure across a larger frequency spectrum.
Currently, most deployed detection platforms interrogate into
small brackets of frequency and there is no single system that
covers the entire range.

While AE signal detection has been suggested for bearings,
the majority that work focuses on damage resulting from ar-
tificially seeded defects (Cockerill et al., 2016)(Al-Balushi,
Addali, Charnley, & Mba, 2010). However, these represent
an already advanced stage of damage. Both Data-driven and
Physics-informed methods have investigated bearing dam-
age detection (Fuentes, Dwyer-Joyce, Marshall, Wheals, &
Cross, 2020)(Lu et al., 2023). Some investigations have
looked into computational simulation of AE signals focused
on crack propagation(Faisal Haider & Giurgiutiu, 2019).
Studies have also been performed to determine the generation
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of AE signals due to rubbing of cracked interfaces using the
moment tensor concept (Joseph & Giurgiutiu, 2020). There
exist still however, a few challenges for data-driven or hybrid
frameworks especially for bearing prognostics. Indeed, most
of the data-sets available for bearing damage are based on ar-
tificially induced damage that do not provide information on
the initial fatigue-induced crack formation stages. Similarly,
the majority of physics-informed methods lack the compu-
tational fidelity required to model the high-cycle fatigue and
damage initiation.

This study aims to address the questions: 1) can we compu-
tationally model and simulate the early AE signals generated
during the formation of subsurface fatigue cracks under dif-
ferent bearing operating conditions to enable early damage
detection and 2) is there any single platform that can be used
to measure signals across a large frequency spectrum (Hz to
MHz)?

2. MODELLING ACOUSTIC EMISSION FROM
CRACKED INTERFACES UNDER RUBBING

Rolling element

Enlarged view of 
the crack interface

Rubbing/clapping of rough 
surfaces as rolling element 
moves

Acoustic emission

time

Figure 1. Emission of AE signals from rubbing of cracked
interface as the ball bearing passes over the cracked interface.

The formation of damage in bearings typically initiates from
defects or imperfections in the material or surface that act as
stress raisers. These defects can be present from the manu-
facturing process or can accumulate over time during oper-
ation. During the manufacturing process, defects or imper-
fections can be introduced into the material’s matrix. These
defects can include inclusions, voids, dislocations, or other
microstructural irregularities. Voids (or vacancies) in the ma-
trix of a material can migrate or move under applied me-
chanical loads. It is possible for these voids to accumulate
at grain boundaries when their movement is inhibited. As a
result, grain boundaries can act as preferred sites for the nu-
cleation and accumulation of defects, including voids or va-
cancies. When the bearing is subjected to operational loads
and stresses, the presence of these matrix defects can lead to
localized stress concentration. As the bearing continues to
operate under cyclic loading conditions, the localized stress
concentration at the matrix defects can exceed the material’s
fatigue strength or fracture toughness. This can lead to the
formation of microscopic cracks. Once the initial cracks have
formed, they tend to propagate or grow under the influence
of the cyclic stresses and the presence of the surrounding de-

fects. As the cracks continue to propagate, they may coalesce
or join together, forming larger cracks or surface defects.
Eventually, this can lead to the formation of spalls, which
are localized areas where material has been dislodged or re-
moved from the bearing surface. When a lightly damaged
bearing is under motion, the cracked interfaces rub/clap. This
releases shear stress energy which is manifested as acoustic
emission(AE) signals. Fig. 1 shows a conceptual representa-
tion of the process. As the bearing rolls over the cracked in-
terface, the surfaces rub against one another causing the gen-
eration of AE signals. The simultaneous presence of motion
and rubbing between the surfaces inspired the use of Prandtl-
Tomlinson (PT) model. The PT model provides a way to sim-
ulate the stick-slip frictional motion characteristics through a
simple spring mass system. Vanossi et al. (Vanossi, Manini,
Urbakh, Zapperi, & Tosatti, 2013) showed that the qualita-
tive conclusions drawn from the model retain their validity
in more advanced models and MD simulations. The rubbing
between two cracked interfaces is modeled as a single solid
with a maximum dimension of l dragged across an undulating
surface with a velocity (v). The model can be used to simu-
late various stages of crack evolution by changing the length
l. Various speed of operation of the bearing can be correlated
with the velocity parameter, v, at which the body is dragged
across the surface as shown in Fig. 2. The surface (S) over

Surface (S)

Dragged Body (B)

Figure 2. PT inspired model of a cracked interface under mo-
tion. The body B is dragged across the surface S with a con-
stant velocity v.

which the solid body is dragged, is modelled as a sinusoidal
function with wavelength (WL). For this study, the value
of the wavelength parameter (WL) is taken to be 0.1 mm.
The body is initially given a displacement (d = δ). In this
study, the value of parameter δ = 0.01 mm. A displacement-
controlled large deformation based finite element analysis is
performed to determine the forcing amplitude (Famp ). The
forcing amplitude is then multiplied with a clipped sinusoidal
function to form the external force function (Ft) which is used
to simulate the effect of the body being dragged across sinu-
soidal surface. The reason for using a clipped forcing func-
tion is the actual physical interaction occurring between the
body dragged (B) across the surface and the surface profile
(S). It can be observed that the external force on B initi-
ates at the time of first contact with S. The amplitude at the
first time of contact is the minimum amplitude of force that
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is experienced by B. This amplitude becomes maximum as
B passes interacts with the peak of S and then gradually the
amplitude reduces to zero as the dragged body passes the sur-
face peak. Thus the external force acts on B only during a
small amount while the interaction occurs. This is simulated
as a clipped sinusoidal forcing function as represented by (1).
For this study, the clipping threshold is taken as 80% of the
Famp value. This value can be tailored to simulate the effects
of friction between the two interacting bodies, amount of lu-
brication available or the amount of clamping force between
interacting solids.{

Ft = Famp sin(ft), if Ft ≥ 0.8Famp

0, otherwise
(1)

Where,
f =

v

WL
(2)

The obtained time-dependent loading (Ft ) is shown in Fig.
3. After the evaluation of the external dynamical force (Ft)
acting on the structure, an elastodynamics problem is solved
using the α-Method (Hilber-Hughes-Taylor Method), to in-
troduce numerical damping, without degrading the order of
accuracy with α = −0.3. The material used for the simu-
lation is structural steel with Young’s Modulus value of 200
GPa. The problem formulation and solution were computed
using a custom code generated in MATLAB. The time de-
pendent loading is applied on a square domain (”domain” is
used here in the sense of physical space under investigation)
as shown in Fig. 4a and the displacement of the structure in
the y-direction is obtained from the simulation as shown in
Fig. 4b. A fast-Fourier transform (FFT) is taken of this tem-
poral signature to generate a single-sided amplitude spectrum
with a sampling window parameter (Fs = 108) as shown in
Fig. 3.

To correlate the motion of the bearing with the motion of
the cracked interface, it is assumed that every time a bear-
ing passes over the cracked interface, the cracked domains
rub against each other. This assumption can be explained
from the fact that the rotational motion of the ball bearings
is not a pure rotational motion. This is due to the presence of
friction and other external forces due to lubrication or radial
loading. The presence of frictional forces between the ball
bearing and the inner race, in the presence of a cracked in-
terface, will cause the cracked surfaces to collide. At a more
microscopic level, the collision between the cracked surfaces
will give rise to motion not only in the direction of the colli-
sion but also in perpendicular direction to the collision. This
is due to the presence of surface asperities along the cracked
interface. The motion in the perpendicular direction will be
amplified due to the free boundary conditions near the inner
race surface. This will give rise to a rubbing/sliding motion
between the cracked interfaces. For this study the ratio (R)
between the radius of the bearing and that of the shaft is taken

as approximately 11 for a wind turbine (Yucesan & Viana,
2019). This provides us with the ball rotational speed (ωb).
The ball rotational speed is used to evaluate frequency (f ).
For an example, if the shaft rotational speed is 50 rpm, the
maximum ball rotational speed will be given by (3).

ωb = R× 50 = 550 rpm (3)

The frequency of the ball passing the cracked interface will
then be 9.1 Hz. The velocity of the body dragged across the
surface can then be evaluated using (2) as shown in (4).

v = 9.1×WL = 9.1× 0.1 = 0.91 mm /s (4)

3. PRELIMINARY RESULTS

Initial studies were performed with a square shaped domain
with a time-dependent force (Ft ) as shown in Fig. 3. The
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Figure 3. Time dependent force (Ft) acting on the body (B)

square domain is discretized with a coarse mesh. The dynam-
ical simulations are performed for domain capable of under-
going large deformation (geometric nonlinearity) with linear
elasticity model. The domain size for simulation was based
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Figure 4. Domain and simulation results of the elasto-
dynamic analysis representing a cracked interface under mo-
tion

upon a study (Singh, Pulikollu, Hawkins, & Smith, 2017)
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Figure 5. Amplitude spectrum of the displacement-vs-time
signal for a square domain

that investigated the cracks formed in wind turbine gearbox
bearings. From the study, we took the average domain to be
of size 0.1mm × 0.1mm as shown in Fig.4a. The FFT of
the transient displacement response, as shown in Fig. 4b, is
shown in Fig. 5. The geometric nonlinearity allows for a
frequency magnification of about 90 times, when the output
structural frequencies are compared with the frequency of the
input force.

To mimic fatigue-based cracked interface profiles more
closely (Yu et al., 2021), the domain shape was changed to a
triangular one as shown in Fig. 6. The dynamical response
of the triangular domain was investigated for two different
lengths of simulation time. The elastodynamical simulations
were run for a time (T ) of 0.1s and 1s to gauge the effects
of different operational times. The results show that as the
domain is vibrated for longer duration, even though the order
of the maximum frequencies remain the same (O (105 )),
the amplitude and shape of the signal changes significantly
as shown in Fig. 7. To account for the effects of bearing
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Figure 6. Large deformation of triangular domain to mimic
crack-interface tribology

rotational speed on the frequency of the emitted AE signals,
large-deformation elastodynamics simulation is carried for
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Figure 7. The frequency response for triangular domain for
t = 0.1s and t = 1s

different values of velocity (v) parameters. The frequency
spectrum of the temporal signals are shown in Fig. 8. The
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(a) v = 15 mm/s
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(b) v = 20 mm/s
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(c) v = 45 mm/s
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(d) v = 50 mm/s

Figure 8. Fast-Fourier Transform of temporal signals ob-
tained from elasto-dynamic simulations for different values
of velocities

analysis was conducted for a range of velocity values. The
correlation obtained between the velocities and the order of
the maximum frequency obtained for each velocity is plotted
in Fig. 8. The relation between velocity of bearing operations
and frequency of signal emitted for large velocities, v = 100
mm/s and v = 500 mm/s is also obtained and shown in Fig.
9. We observe, from Fig. 8 and Fig. 9, that for different
bearing operational velocities, the average signal intensity is
shifting from O(105) towards O(104). This can be explained
by the fact that the frequency response essentially consists of
two components. The first component is the direct result of
the impact force, and the second component is the response
to the impact force during the time when no force acts on
it. Initially for low velocities, these two components of the
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frequency response feed into each other resulting in an in-
crease of the maximum order of the frequency response. As
the velocity increases above a certain threshold, as shown in
Fig. 9 for v = 100 mm/s and v = 500 mm/s, the amount of
time between two subsequent impact loads decrease, caus-
ing a decrease in the response contribution of the frequency
component and thereby decreasing the maximum order of the
frequency output.
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Figure 9. Fast-Fourier Transform of temporal signals ob-
tained from elasto-dynamic simulations for v = 100 mm/s
and v = 500 mm/s

4. EXPERIMENTAL RESULTS AND DISCUS-
SION

The aim of the experiments was to establish initial experi-
mental measurements on metal-metal friction leading to the
creation of AE signals and to compare our findings between
experiments and simulations. To that end, we sought a sys-
tem that mimics the above simulations of two rough metal
surfaces rubbing against each other. The measurement setup
consisted of an end mill (2 and 4 flute) that was used to mill
blocks of different metals at varying velocities (or revolutions
per minute) as shown in Fig.10. While this is not the same it
is sufficiently equivalent to the region of the crack interface
as seen in Fig. 2.

In particular, we argue that there is equivalence in frictional
contact and energy dissipation mechanisms. All surfaces in-
volved in these processes have surface roughness and asper-
ities (microscopic peaks and valleys). In the case of an end
mill, the grains create a rough surface, while in a damaged
bearing, the crack surfaces tend to be rough and irregular due
to the fracture process. During the milling process, the abra-
sive grains on the end mill are in frictional contact with the
metal work-piece, causing material removal through a com-
bination of plowing, cutting, and fracture mechanisms. Sim-
ilarly, in a damaged bearing, the two crack surfaces are in
frictional contact, and their relative motion generates energy
dissipation through friction and wear processes. In addition,
in both cases, a significant portion of the energy input is dis-
sipated through friction and elastoplastic deformation pro-
cesses. In milling, the energy is supplied by the motion of

Figure 10. Schematic of the frictional interaction between
the end mill and the metal block, that generates the acoustic
waves. These waves are picked up by the FBG sensors placed
near the interaction point.

the mill against the metal block, while in a damaged bear-
ing, the energy comes from the relative motion of the crack
surfaces due to the applied load and operational conditions.
During the milling process, the grains on the end facet of the
mill are in frictional contact with the metal work-piece, caus-
ing material removal through a combination of plowing, cut-
ting, and fracture mechanisms. Similarly, in a damaged bear-
ing, the two crack surfaces are in frictional contact, and their
relative motion generates energy dissipation through friction
and wear processes. In addition, in both cases, a significant
portion of the energy input is dissipated through friction and
elastoplastic deformation processes. In milling, the energy is
supplied by the relative motion of the milling end, while in a
damaged bearing, the energy comes from the relative motion
of the crack surfaces due to the applied load and operational
conditions. It is important to note that while the fundamental
mechanisms of frictional contact and energy dissipation are
similar, there are also significant differences in the specific
details and scales involved. The milling process is typically a
controlled material removal operation (essentially a shearing
operation that separates material), while the motion of crack
surfaces in a damaged bearing is an undesirable phenomenon
that leads to further degradation and failure (mostly rubbing
of surfaces with some growth in crack size) . Nevertheless,
the comparison of these two processes can provide insights
into the tribological and material behavior at the interface,
allowing for the application of similar analytical and mod-
eling approaches to understand and predict the phenomena
involved.

To measure the AE signals, we used custom Fiber Bragg
Gratings (FBGs) etched on to optical fibers as displacement
sensors. FBGs have the capacity to pick up minute changes
in strain caused by acoustic waves triggered in the metal upon
metal-metal interaction, which are manifested as very small
displacements of the fiber. Our sensitive readout system en-
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ables us to detect displacements down to 30 fm (Overton,
2011)(Kiesel et al., 2007) (1400 nm – 1700 nm). We de-
signed a compact transimpedance amplifier with an amplifi-
cation of 106 V/A and bandwidth of 58kHz (3dB frequency).
The amplifier chip itself was able to provide amplification
up to a bandwidth of 120KHz but in order to improve the
noise performance we set the bandwidth to 60kHz. The am-
plifier is based on a Precision, Very Low Noise, Low Input
Bias Current, Wide Bandwidth JFET Operational Amplifiers
from Analog Devices. For our measurements, the fibers were
affixed onto one of the metal surfaces using epoxy, to mea-
sure strain changes at different wavelengths in the range of
1400 nm - 1700 nm. We studied the impact on the measured
frequencies of the AE, for varying metal-metal relative veloc-
ities (or revolutions per minute). Two examples of employing
a stainless-steel drill to measure the acoustic emission vibra-
tions picked up by the fiber optic sensors mounted on a cop-
per plate or an aluminum plate are shown in Fig. 11. For
the measurement, the end mill was carefully lowered onto the
metal of interest, within a 2 inch distance from the FBG sen-
sors. As can be seen, for the different RPM speeds across the
two metals there is a strong series of peaks between 104 and
105 Hz, but no significant variation in the frequencies of the
emitted AE signals across the different cases. This compares
well with what is seen in the modeling of metal-metal friction
rubbing in Fig. 8 and Fig. 9. One of the expected reasons of
the lack of variation could be the fact that the velocities under
consideration are far lower than the velocity of sound in the
metals and thus small input variations do not affect the AE
signals greatly. However, this also clearly shows that to de-
tect the beginning of damage of two metal surfaces grinding
against each other, measuring signals in the aforementioned
frequency range may be beneficial.

The FBG sensors are well-suited for such applications due
to their compactness, low-cost, low susceptibility to electro-
magnetic interference (EMI), capacity to multiplex sensors
and easy installation across hard-to-reach sections of instru-
mentation. Another significant advantage of FBG sensors is
that they allow measurements across a large bandwidth of fre-
quencies from Hz to MHz. For our application example, we
are especially interested in the higher frequencies and used a
variable operational amplifier to control the frequency band-
width of measurement on our chipaccordingly. This means
that we can detect slow degradation of vibrating metallic parts
across a large frequency range, giving insight into various
kinds of potential fault modes.

5. CONCLUSIONS

This study proposes the use of the nanofrictional Prandtl-
Tomlinson model to predict the frequencies that occur at
cracked interfaces of early bearing damage. According to
the model, frequencies are expected in the acoustic emission
(AE) region, confirming observations in the field. The study

(a) (b)

(c) (d)

Figure 11. Fiber optic strain measurements picking up acous-
tic emission signals generated from the interaction of two
metal surfaces for different metals and relative velocities: (a)
copper-stainless steel (4000 RPM), (b) copper-stainless steel
(6000 RPM), (c) aluminum-stainless steel (5000 RPM) and
(d) aluminum-stainless steel (7000 RPM). The presence of
the strongest signals between 104 and 105 Hz in both experi-
ments and simulations is clearly seen.

considers different bearing rotational speeds and integrates
large deformation modelling of structures with elastodynamic
simulations. Initial experimental studies on metal-metal sur-
face friction use fiber optic sensors that can capture AE sig-
nals. The results, although preliminary in nature, agree with
those predicted by the model. The ability to detect bearing
damage at this early stage has the promise to significantly in-
crease the prognostic horizon for bearing failure.
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