References
1. Arjovsky, M., & Bottou, L. (2017). Towards Principled Methods for Training Generative Adversarial Networks. , 1–17. Retrieved from http://arxiv.org/abs/1701.04862
2. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). Infogan: Interpretable representation learning by information maximizing generative adversarial nets. Advances in neural information processing systems, 29.
3. da Costa, P. R. d. O., Akc.ay, A., Zhang, Y., & Kaymak, U. (2020). Remaining useful lifetime prediction via deep domain adaptation. Reliability Engineering & System Safety, 195, 106682.
4. Donahue, C., McAuley, J., & Puckette, M. (2018). Adversarial audio synthesis. arXiv preprint arXiv:1802.04208.
5. Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., & Roberts, A. (2019). Gansynth: Adversarial neural audio synthesis. arXiv preprint arXiv:1902.08710.
6. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., . . . Lempitsky, V. (2016). Domainadversarial training of neural networks. Journal of machine learning research, 17(59), 1–35.
7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2020, oct). Generative adversarial networks. Commun. ACM, 63(11), 139–144. Retrieved from https://doi.org/10.1145/3422622 doi: 10.1145/3422622
8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved training of wasserstein gans. , 5769–5779.
9. Hsu, W.-N., Zhang, Y., & Glass, J. (2017). Unsupervised domain adaptation for robust speech recognition via variational autoencoder-based data augmentation. , 16–23.
10. Hu, T., Guo, Y., Gu, L., Zhou, Y., Zhang, Z., & Zhou, Z. (2022). Remaining useful life estimation of bearings under different working conditions via wasserstein distance-based weighted domain adaptation. Reliability Engineering & System Safety, 224, 108526.
11. Iacono, P., & Khan, N. (2023). Structure preserving cyclegan for unsupervised medical image domain adaptation. arXiv preprint arXiv:2304.09164.
12. Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 4401–4410).
13. Li, X., Li, J., Zuo, L., Zhu, L., & Shen, H. T. (2022). Domain adaptive remaining useful life prediction with transformer. IEEE Transactions on Instrumentation and Measurement, 71, 1-13. doi: 10.1109/TIM.2022.3200667
14. Long, M., Cao, Z., Wang, J., & Jordan, M. I. (2018). Conditional adversarial domain adaptation. Advances in neural information processing systems, 31.
15. Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2013). Transfer feature learning with joint distribution adaptation. , 2200–2207.
16. Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2014). Transfer joint matching for unsupervised domain adaptation. , 1410–1417.
17. Luleci, F., Catbas, F. N., & Avci, O. (2023). Cyclegan for undamaged-to-damaged domain translation for structural health monitoring and damage detection. Mechanical Systems and Signal Processing, 197, 110370.
18. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
19. Nejjar, I., Geissmann, F., Zhao, M., Taal, C., & Fink, O. (2024). Domain adaptation via alignment of operation profile for remaining useful lifetime prediction. Reliability Engineering & System Safety, 242, 109718.
20. Ozdagli, A., & Koutsoukos, X. (2020). Domain adaptation for structural health monitoring. , 12(1), 9–9.
21. Palladino, J. A., Slezak, D. F., & Ferrante, E. (2020). Unsupervised domain adaptation via cyclegan for white matter hyperintensity segmentation in multicenter mr images. , 11583, 1158302.
22. Pu, Z., Cabrera, D., Li, C., & de Oliveira, J. V. (2023). Sliced wasserstein cycle consistency generative adversarial networks for fault data augmentation of an industrial robot. Expert Systems with Applications, 222, 119754.
23. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434.
24. Saravanan, S. S., Luo, T., & Van Ngo, M. (2023). Tsi-gan: Unsupervised time series anomaly detection using convolutional cycle-consistent generative adversarial networks. , 39–54.
25. Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data set. NASA ames prognostics data repository, 18, 878–887.
26. Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for aircraft engine runto- failure simulation. In 2008 international conference on prognostics and health management (pp. 1–9).
27. Schockaert, C., & Hoyez, H. (2020). Mts-cyclegan: An adversarial-based deep mapping learning network for multivariate time series domain adaptation applied to the ironmaking industry. arXiv preprint arXiv:2007.07518.
28. Sun, B., Feng, J.,&Saenko, K. (2017). Correlation alignment for unsupervised domain adaptation. Domain adaptation in computer vision applications, 153–171.
29. Sun, B., & Saenko, K. (2016). Deep coral: Correlation alignment for deep domain adaptation. , 443–450.
30. Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017).Adversarial discriminative domain adaptation. , 7167– 7176.
31. Volpi, R., Morerio, P., Savarese, S., & Murino, V. (2018). Adversarial feature augmentation for unsupervised domain adaptation. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 5495– 5504).
32. Wang, Q., Meng, F., & Breckon, T. P. (2023). Data augmentation with norm-ae and selective pseudo-labelling for unsupervised domain adaptation. Neural Networks, 161, 614–625.
33. Zotov, E., & Kadirkamanathan, V. (2021). Cyclestyleganbased knowledge transfer for a machining digital twin. Frontiers in Artificial Intelligence, 4. doi: 10.3389/frai.2021.767451