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ABSTRACT

Predictive maintenance is crucial for enhancing operational
efficiency and reducing costs in Prognostics and Health Man-
agement (PHM). One of the key tasks in predictive mainte-
nance is the estimation of Remaining Useful Life (RUL) of
machinery. In practice, the data for different machines is not
always accessible in sufficient quantity or quality, therefore
the machine learning models trained on machines in one do-
main often perform poorly when applied to other domains due
to covariate shifts. As a solution, Domain Adaptation (DA)
aims to tackle domain shifts by extracting domain-invariant
features. However, traditional methods often fail to ade-
quately address the complexity and variability of real-world
data. We propose to address this challenge, using a Wasser-
stein CycleGAN with Gradient Penalty (W-CycleGAN-GP)
to learn mappings between domains and generate augmented
data in the target domain from data in the source domain. We
use our approach to generate realistic augmented data that
bridge domain gap coupled with recent work on adversarial-
based and correlation alignment-based DA models to improve
the performance of RUL prediction models in target domains
without having access to labeled data. The experimental re-
sults on the C-MAPSS dataset demonstrate a significant im-
provement in the RUL prediction score and accuracy within
the target domain.

1. INTRODUCTION

The demand for reliability in complex systems has led to
significant advances in Prognostics and Health Management
(PHM). In this context, accurately estimating the Remaining
Useful Life (RUL) of systems and their components is essen-
tial for robust predictive maintenance strategies. RUL predic-
tion enables maintenance decisions that improve operational
efficiency and reduce costs.

Dorian Joubaud et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Machine learning models have been widely adopted for RUL
prediction due to their ability to learn complex patterns from
historical data. Data-driven models, in particular, offer ad-
vanced frameworks for RUL estimation. They can learn from
historical data and identify patterns and features associated
with system degradation. These models can effectively han-
dle non-linear dynamic systems and provide high-accuracy
predictions. However, there are still challenges persisting
such as multidimensional data and the need for extensive
datasets in different domains. These require further develop-
ments that can provide advanced ML techniques to improve
prediction accuracy and system reliability.Also, in practice,
the data available for different machines is often not accessi-
ble in sufficient quantity or quality. Additionally, there can
be significant variations between the operating conditions or
failure modes of different machines, even when they are of
the same type. These variations lead to covariate shifts, where
the distribution of the data in the source domain (where the
model is trained) differs from that in the target domain (where
the model is applied). As a result, machine learning models
trained on data from one domain often perform poorly when
applied to other domains.

Domain Adaptation (DA) techniques have been developed
to address the challenge of covariate shifts by extracting
domain-invariant features. The goal of DA is to learn a rep-
resentation that is robust to changes in the data distribution
between the source and target domains. The adversarial train-
ing enable the model to learn representations that are indis-
tinguishable between the source and target domains. Despite
progress in DA research, traditional methods often do not ad-
equately address the complexity and variability of real-world
data, particularly in the context of RUL prediction.

To address these challenges, we propose applying DA for data
augmentation. Using a Wasserstein CycleGAN with Gradient
Penalty (W-CycleGAN-GP), our objective is to learn map-
pings between the domains and generate augmented data in
the target domain from data in the source domain. Taking ad-
vantage of recent advances in adversarial DA models in RUL,
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we augment the target domain dataset with realistic synthetic
data. Our combined approach allows for improved perfor-
mance of RUL prediction models in target domains without
requiring access to labeled data in the target domain.

We validate our approach on the C-MAPSS dataset, a stan-
dard benchmark for RUL prediction tasks. The experimental
results demonstrate a significant improvement in RUL predic-
tion scores and accuracy within the target domain compared
to unaugmented prediction, showcasing the effectiveness of
our method in practical applications.

The rest of this paper is organized as follows: Section 2
reviews related work domain adaptation, data augmentation
and RUL prediction. Section 3 describes the proposed W-
CycleGAN-GP approach in detail, including the architecture
and training procedure. Section 4 presents the experimental
setup and results, while Section 5 discusses the findings and
their implications. Finally, Section 6 concludes the paper and
suggests directions for future research.

2. RELATED WORK

2.1. Domain Adaptation

Domain adaptation (DA) is a sub-field of transfer learning
that aims to improve the performance of a model on a tar-
get domain in the presence of covariate shifts between source
and target domains. DA has been applied to many domains,
notably on structural health monitoring (SHM) where an ML
model is trained on numerical simulation and tested on exper-
imental data (Ozdagli & Koutsoukos, 2020). Unsupervised
domain adaptation (UDA) is a specific type of DA where
the target labels are not available during the training proce-
dure. UDA is particularly relevant in RUL prediction, where
labelled failure data some domains is unavailable or is pro-
hibitively expensive and time-consuming to collect.

Initial works considering the problem are based on aligning
data distributions in the source and target domains. (Long,
Wang, Ding, Sun, & Yu, 2013), (Long, Wang, Ding, Sun,
& Yu, 2014), and (Long, Cao, Wang, & Jordan, 2018) use
maximum mean discrepancy to reduce differences in the
marginal and/or conditional distributions. Correlation Align-
ment (CORAL) (Sun, Feng, & Saenko, 2017) minimizes do-
main shifts by aligning the second-order statistics (covari-
ance matrices) of source and target distributions. With the
success of deep neural network architectures and their ability
to capture deep feature representations, adaptations of exist-
ing methods and the development of new approaches aiming
to capture domain-invariant features from source and target
data have been developed. (Sun & Saenko, 2016) adapted
CORAL within a deep convolutional neural network (CNN)
to learn a nonlinear transformation that aligns correlations
of layer activations. (Ganin et al., 2016) paved the way to
promising research with domain adversarial neural network

(DANN). They use a domain discriminator with a gradient
reversal layer (GRL) to make features from both domains in-
distinguishable, thereby learning domain-invariant features.
Adversarial Discriminative Domain Adaptation (ADDA) sep-
arates the feature extraction and adversarial training phases,
allowing for more flexible and stable training. ADDA aligns
the feature distributions of the source and target domains by
employing a discriminator that distinguishes between them
(Tzeng, Hoffman, Saenko, & Darrell, 2017).

Most DA approaches have been developed for classification
tasks over computer vision data. Thus, these techniques
need to be adapted for regression tasks and for sequential
data, which are prevalent in the PHM context. Recent works
aim to adapt DA techniques for RUL prediction. (da Costa,
Akçay, Zhang, & Kaymak, 2020) use long-short term mem-
ory (LSTM) networks and adversarial training from DANN
to extract domain-invariant features that can be used to pre-
dict RUL in the target domain. (Hu et al., 2022) introduce
the Wasserstein distance-based weighted domain adversarial
neural network (WD-WDANN) to handle RUL DA with dif-
ferent working conditions. Their approach only considers
high-quality data in terms of transferability to avoid outliers
that could penalize feature alignment. (Li, Li, Zuo, Zhu, &
Shen, 2022) propose to push DA even further by aligning
distributions both at the semantic and at the feature level us-
ing attention-based backbone architecture, which shows high
quality results. Recently, (Nejjar, Geissmann, Zhao, Taal,
& Fink, 2024) propose two novel adversarial-based DA ap-
proaches that adapt DANN to take into account the different
operational conditions (e.g. operating speed, working tem-
perature or environmental noise) that might be unequally rep-
resented in the source and target domain.

2.2. Data Augmentation

Data augmentation is a very popular technique to tackle data
scarcity or as a regularisation technique in machine learn-
ing (ML). It consists to generate synthetic data from existing
data. Generative adversarial network (GAN) is a very popu-
lar technique to perform data augmentation. This builds on
a competitive minimax game between two neural networks:
the generator, which learns to create artificial data samples,
and the discriminator, which learns to detect fake data sam-
ples (Goodfellow et al., 2020). The distribution of data is
generated by the generator network; therefore, it can provide
a representation of the true data that can be directly used for
simulating the underlying process. In the several years since
its inception, the approach has been expanded in multiple di-
rections. Research on different neural network architectures
for both the generator and discriminator has introduced the
deep convolutional model DCGAN, which is employed for
unsupervised image feature extraction and picture generation
(Radford, Metz, & Chintala, 2015). The absence of control
over the outputs of the original GAN prompted researchers
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to develop methods for conditioning GAN models with ad-
ditional inputs or outputs. Originally introduced in Condi-
tional GAN (Mirza & Osindero, 2014), where image genera-
tion was effectively linked to input labels through supervised
learning, subsequent research demonstrated an unsupervised
conditional training method grounded in information theory
with InfoGAN (Chen et al., 2016).

In recent times, GANs have imptoved the state of the art
across various domains. For instance, in neural audio syn-
thesis, WaveGAN has adapted the DCGAN model mentioned
above for audio sequence generation (Donahue, McAuley, &
Puckette, 2018), and GANSynth has been developed for the
generation of high-quality audio spectrograms (Engel et al.,
2019). A most notable breakthrough in simulation of real-
istic high-resolution (1024x1024) images of human faces has
been succeded by the StyleGAN architecture that has adapted
the style transfer methods for the GAN’s generator network
(Karras, Laine, & Aila, 2019). While most of GAN studies
have focused on image-generation, the generation of time-
domain signals with GANs is still a relatively unexplored area
(Zotov & Kadirkamanathan, 2021).

In the context of UDA, data augmentation can also be used
as with (Hsu, Zhang, & Glass, 2017) who developed an
augmentation-based method do generate labelled data in the
target domain for speech recognition suing a Variable Auto-
Encoder (VAE) trained in an unsupervised way. (Volpi,
Morerio, Savarese, & Murino, 2018) leverage the strength of
Conditional-GAN to perform data augmentation in the fea-
ture space. In the same way (Wang, Meng, & Breckon, 2023)
use feature augmentation for image classification to perform
selective pseudo-labeling with a norm-AE generative model.
Their objective is to take advantage of unlabeled data from
target domain to learn a unified classifier for both source
and target data. Taking advantage from GAN architecture,
(Palladino, Slezak, & Ferrante, 2020) use Cycle-consistency
GAN (CycleGAN) on magnetic resonance images to main-
tain distribution to generate relevant data and avoid distribu-
tion shift between two data domain. (Iacono & Khan, 2023)
introduce a structure preserving CycleGAN which is able to
maintain the structure of medical data when generating syn-
thetic data. Both discussed approach show promising results
and an increase of performance in the UDA approach studied.

In the context of PHM, time-series data extracted from sen-
sors are prevalent. However, fewer works on CycleGAN and
time-series can be found in the literature. (Saravanan, Luo,
& Van Ngo, 2023) apply CycleGAN to time-series by trans-
forming time-series into 2D images for anomaly detection.
(Schockaert & Hoyez, 2020) develop a CycleGAN for multi-
variate time-series on an artificial blast furnace dataset. An-
other variant of CycleGAN uses Wasserstein distance to sta-
bilise the training, (Luleci, Catbas, & Avci, 2023) for fault
diagnosis bearing data generation. Finally, (Pu, Cabrera, Li,

Feature
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Hidden
Feature

RUL
Regressor

Domain
Classifier

Source Domain

Target Domain Forward pass
Backward pass

GRL

Figure 1. DANN architecture flowchart inspired from the
work of (Nejjar et al., 2024). Each domain data are encoded
into hidden features using feature extractor. Regressor predict
the RUL for the source data. Domain classifier coupled with
Gradient Reversal Layer (GRL) ensure that feature from both
domains are indistinguishable.

& de Oliveira, 2023) proposed an updated version using the
sliced Wasserstein distance (SWD). SWD estimates the dif-
ference between two distribution with a lower computational
cost compared to the Wasserstein distance by sorting 1D ran-
dom projection on the projection sphere. They adapt their
approach for both conditional and unconditional CycleGAN.
They test their approach on computer vision data (MNIST
dataset) and on industrial time-series data (robot fault diag-
nosis).

3. DATA AUGMENTATION FOR UNSUPERVISED DO-
MAIN ADAPTATION

In this paper, we study the application of unsupervised do-
main adaptation (UDA) in the case of RUL prediction in
PHM. This section presents the problem and the notations.

3.1. Problem Definition

Consider a source domain S = {(xi
s, y

i
s)}

ns
i=1 where xi

s ∈ XS
denotes a multivariate time-series data collected from sensors
and yis ∈ YS the remaining useful life continuous label and
ns is the number of available data. Similarly, a target domain
T = {(xi

t, y
i
t)}

nt
i=1 where xi

t ∈ XT and yit ∈ YT . We as-
sume a covariate shift between domains where source and
target share the same conditional distribution ps(ys|xs) =
pt(yt|xt) but from different marginal distributions ps(xs) ̸=
pt(xt). Our objective is to learn a mapping function f∗ that
approximates the degradation of the target domain from the
target domain sensor data f∗(xi

t) ≈ yit. During the learning
phase, the training data only contain source data and labels
{(xi

s, y
i
s)}

ns
i=1 and target data {(xi

t)}
nt
i=1. This configuration

is called unsupervised domain adaptation (UDA).
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3.2. Unsupervised Domain Adaptation

To handle a configuration where no labels are available in the
target domain, we leverage both traditional work with CORe-
lation ALignment (CORAL) and recent work with Domain
Adversarial Neural Networks (DANN).

3.2.1. Domain Adversarial Neural Network

Studies by (da Costa et al., 2020) and (Nejjar et al., 2024)
combine DANN with LSTM and CNN to align deep features
and perform domain adaptation between different machines
for Remaining Useful Life (RUL) prediction. DANN aims
to align the distributions of both domains while learning to
predict the RUL of the source domain. It is composed of
three parts: (i) a feature extractor, (ii) a regressor, and (iii) a
domain classifier.

(i) Each input data point xi ∈ X is given a label di ∈ {0, 1}
that represents its input domain. The feature extractor fe
takes input data xi ∈ X belonging to one domain and ex-
tracts hidden features hi = fe(x

i) from the input data.

(ii) The regressor R takes the hidden features hi extracted
from the data that belong to the source domain and predicts a
singleton that estimates the RUL of the given input sequence
ŷi = R(hi). The root mean square error (RMSE) is used as a
loss to minimize the error between the actual RUL yi and the
predicted RUL ŷi.

(iii) Given the hidden features hi, the discriminator Dd esti-
mates the domain di to which the original input data belong
d̂i = Dd(hi). Binary cross-entropy (BCE) is used as a loss
to minimize the error between the actual domain di and the
predicted domain d̂i:

BCE = −(di log(d̂i) + (1− di) log(1− d̂i))

While D learns to minimize the classification loss, fe learns
to maximize this loss thanks to the gradient reversal layer
(GRL) that reverses the sign of the gradient during backward
propagation. These opposite objectives describe an adver-
sarial learning scenario where the objective for the feature
extractor is to learn to extract a representation of the data
such that data from the source and target domains are in-
distinguishable. Figure 1 show the different part of DANN
approach.

3.2.2. CORelation ALignment

CORAL (Sun et al., 2017) is a simple and effective method
for UDA that aims to transform the source domain features
to match target domain’s feature distribution. The transfor-
mation matrix is computed to minimize the Frobenius norm
between the covariance matrices of the source and target do-
mains, thus aligning their second-order statistics. In their

work (da Costa et al., 2020) used a simple deep neural net-
work on top of the aligned space to predict the RUL of both
source and target domains. The model is trained using labels
from the source domain and evaluated on the target domains.

3.3. CycleGAN

CycleGAN is an extension of GAN that aims to learn two
mappings between two domains, S and T . It relies on two
adversarial neural network architectures, each composed of
one generator and one discriminator, which compete against
each other. The objective is to learn two generator models:
Gst : S → T and Gts : T → S. These generators translate
data from the source domain to the target domain and vice
versa, while competing against adversarial discriminators DS
and DT . The discriminator models are trained to distinguish
between real data from their respective domains and fake data
generated by the generators.

During training, real data xs from domain S is fed into Gst to
generate fake data x̃t in domain T :

x̃t = Gst(xs). (1)

This fake data is then compared to real data from domain T
by DT . Simultaneously, the fake data generated in domain
T is passed through Gts to reconstruct data

≈
xs in the original

domain S.

≈
xs = Gts(x̃t). (2)

Similarly, Gts takes data from domain T and generates data
in domain S. The adversarial training process involves com-
paring this generated data to real data from domain S using
DS . The fake data is then re-transformed back to the original
domain T using Gst. The training objectives of CycleGAN
contain the following losses.

Adversarial Losses: We leverage from the work of
(Arjovsky & Bottou, 2017) who introduce the Wasserstein
GAN (WGAN) that use the Wasserstein-1 distance and clip
the weight for the discriminator optimization to stabilize the
training.

LWGAN (Gst, Dt,S, T ) = Ext∼pt(xt) [DT (xt)]

− Exs∼ps(xs) [DT (Gst(xs)],
(3)

LWGAN (Gts, Ds,S, T ) = Exs∼ps(xs) [DS(xs)]

− Ext∼pt(xt) [DS(Gts(xt)].
(4)

Gradient Penalty Loss: To replace the weight clipping
(Gulrajani, Ahmed, Arjovsky, Dumoulin, & Courville, 2017)
introduce gradient penalty to WGAN. It consists of classify-
ing uniformly samples along straight lines between pairs of
points sampled from the real data distribution and fake gen-
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Figure 2. Proposed methodology flowchart inpired from
(Nejjar et al., 2024). Target domain is augmented using Cy-
cleGAN (green). Each domain are encoded into hidden fea-
tures using feature extractor. Regressor predicts the RUL for
the source data. Domain adaptation module (such as DANN
or CORAL) ensures that features of both domains are indis-
tinguishable.

erated data distribution.

LGP (Dt, Ds) = Ex̂t∼pt(x̂t)

[
(∥∇x̂tDt (x̂t)∥2 − 1)

2
]

+ Ex̂s∼ps(x̂s)

[
(∥∇x̂sDs (x̂s)∥2 − 1)

2
]
.

(5)

where ps and pt are the sampling distribution that uniformly
samples along straight lines between pairs of points sampled
from the real data distribution and the fake generated data
distribution from source and target respectively.

Cycle Consistency Loss: Is one of the key component of
CycleGAN architecture. The cycle consistency loss ensures
that generated data from one domain can be recovered to its
initial domain.

Lcycle(Gts, Gst) = Exs∼ps(xs) [∥Gts(Gst(xs))− xs∥1]
+ Ext∼pt(xt) [∥Gst(Gts(xt))− xt∥1] .

(6)

Identity Losses: Encourages the mappings to preserve in-
herent characteristics of the input data in the case where the
data are close the respective output distribution. In other
words, it act as regularisation for the CycleGAN enforcing
Gst(xt) ≈ xt and Gts(xs) ≈ xs.

Lcycle(Gts, Gst) = Ext∼pt(xt) [∥Gst(xt)− xt∥1]
+ Exs∼ps(xs) [∥Gts(xs)− xs∥1] .

(7)

3.4. Proposed approach

The proposed approach of this paper aims to leverage Cy-
cleGAN architecture to generate augmented target data from
source data to overcome potential data scarcity in the tar-
get domain. The idea is to learn a transformation that trans-

form source sensors time-series to target sensors time-series
to complete the target domain.

The augmented dataset is then fed into a domain adaptation
DA RUL prediction model. This model is designed to esti-
mate the RUL in the target domain without having access to
labeled data. By incorporating augmented data, we expect the
model to overcome limitations posed by the initial dataset’s
scarcity, leading to improved predictive score. Figure 2 show
a summary of our methodology

4. DATASETS

To evaluate our approach, we use the NASA Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS)
datasets containing turbofan engine degradation data (Saxena
& Goebel, 2008). It is composed of four datasets that include
information from 24 sensors with different operating condi-
tions and fault types. Table 1 gather the information of each
dataset. These datasets are a key point in the literature for
the development and testing of prognostic algorithms for air-
craft engine health management and have been case studies
for many studies. The signals in the data consist of multi-
variate and multidimensional time series data. These include
sensor measurements and three operational settings: altitude,
Mach number, and sea level temperature.

Figure 3. Simplified C-MAPSS diagram (Saxena et al., 2008)

The datasets are divided into training and testing trajectories
for RUL predictions. Training trajectories is formed of run-
to-failure data for developing lifetime prediction algorithms.
On the other hand, test trajectories were cut before failure
to validate these algorithms. How the test trajectories will
behave will be predicted by the developers. The sub data
setd includes different operational regimes and failure modes.
Noise and initial wear-performace levels are included to bet-
ter represent the real-life operational conditons and uncertain-
ties (Saxena & Goebel, 2008).

The C-MAPSS simulation includes a fan speed controller,
high-limit regulators, limiting regulators, acceleration and de-
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celeration limiters, and a power management system. All are
integrated similar to real engine controllers (see Figure 3).
The atmospheric model in the simulation can operate at alti-
tudes up to 40,000 ft, Mach numbers up to 0.90, and temper-
atures from -60 to 103°F.

Each data set contains various parameters recorded at differ-
ent operating settings and regimes, such as total temperature
at the fan inlet, pressure at the fan inlet, physical fan speed,
and motor pressure ratio. While some datasets FD002 and
FD004 contain more than one operational regime, FD001 and
FD003 have a single operational status.

Data FD001 FD002 FD003 FD004
Engines: Train 100 260 100 249
Engines: Test 100 259 100 248
Op. Conditions 1 6 1 6
Fault Modes 1 1 2 2

Table 1. C-MAPSS datasets descriptions (Saxena & Goebel,
2008)

To setup our experiment, we employ one dataset as source and
another as target. We expect that datasets with more training
data and a more operational conditions (FD002 and FD004)
will generalize better to target domains compared to datasets
with fewer data and fewer operational conditions (FD001 and
FD003). In fact, when datasets with more operational con-
ditions are used as unlabeled target domains, it can present
challenges for adversarial learning, making it harder for the
model to adapt effectively.

5. EXPERIMENTS

5.1. Experimental Settings

The training procedure involves selecting a source and a tar-
get domain. In this study, we used all C-CMAPSS dataset
(FD001, FD002, FD003, FD004) dataset. The degradation
trajectories are multivariate time-series measurement from
21 sensors and 3 operational settings. Among the selected
dataset, 7 sensors have constant value. Since the constant
values are different depending on the dataset, we keep the
constant sensors to better learn the intrinsic characteristics of
source and target. All sensor time-series are pre-processed as
well as the RUL values. Each dataset is normalised in [−1; 1]
using z-normalisation. We employ sliding windows of length
50 on all trajectory time series data to generate source and
target domain observation. Similarly to (Li et al., 2022), we
employ a piece-wise linear degradation with initial constant
values of 130 cycles before the linear degradation to model
the RUL in the datasets.

5.2. Model Architecture

In this paper, we study the benefit of using CycleGAN aug-
mentation for unlabeled data in the target domain. To this end
we assess the performance of two state of the art UDA model
(DANN and CORAL) for RUL prediction with and without
augmentation.

In particular, the DANN model configuration is a simple deep
neural network architecture to ensure fair comparison. The
feature extractor is composed of three 1D convolutional lay-
ers with 128, 64, and 32 neurons, using ReLU activation.
Each layer has a filter size of ten with a stride of 1. The dis-
criminator contains three fully connected layers with 128, 64,
and 1 neuron, as well as one dropout layer with a probability
of 0.1. It uses ReLU activation except for the last layer, where
we use sigmoid activation to perform domain prediction.

The regressor is used in both DANN and CORAL configu-
rations. It operates on the output from the DANN feature
extractor and on the transformed source space produced by
CORAL. It contains three fully connected layers with 128,
64, and 1 neuron, using ReLU activation. During the training
batch size is set at 256 when datasets FD001 or FD003 is used
either as source or target, else batch size is set at 512.

The CycleGAN architecture used is based on the work of (Pu
et al., 2023). The generator consists of five 1D convolutional
layers, with a residual block inserted after every two convo-
lutional layers. This is followed by five transposed convo-
lutional layers, each also followed by a residual block every
two layers. To enhance the diversity of the generated data, a
learnable parameter is introduced in the transposed convolu-
tion block. This parameter scales a random noise added each
time a transposed convolution is executed, promoting more
varied outputs from the generator. The discriminator, on the
other hand, comprises five stacked convolutional layers. The
output of these layers is flattened and fed into a fully con-
nected layer with a sigmoid activation function to perform
domain classification.

5.3. Performance Metrics

To estimate the performance of our model, we employ both
commonly used metrics for RUL prediction: (i) the Root
Mean Square Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (8)

and (ii) a non-symmetrical scoring function that penalize over
estimation:

Score =

n∑
i=1

eα(|ŷ
i−yi|) (9)
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where

α =

{
1/10 if ŷi − yi > 0
1/13 else

(10)

and ŷi is the predicted RUL and yi the actual RUL for a given
window trajectory

To measure the domain shift between domains, we employ
the Wasserstein distance (or Kantorovich–Rubinstein metric)
that measures the amount of information required to trans-
form one distribution into another.

W (S, T ) = inf
γ∈Π(S,T )

∫
Ω2

D(xs, xt) dγ(xs, xt) (11)

where Π(S, T ) is the joint distribution of source and target,
D a distance and γ(xs, xt) represents the amount of “infor-
mation” transported from xs in S to xte in T .

Using this metric, we can estimate the domain shift between
the original target domain data and the augmented target data
generated from the source, providing an estimation of the
quality of the augmented data.

5.4. Experimental Results

5.4.1. Data Augmentation Quality Evaluation

To evaluate the quality of our augmented data we use the
Wasserstein distance to evaluate domain shift between the
original target data and the augmented one. Measure betwen
source/target and target/target augmented can be found in Ta-
ble 2.

The domain shift between domains with the same number
of operational conditions is minimal (e.g., FD002/FD004:
0.01 and FD001/FD003: 0.04), which makes it challeng-
ing for our CycleGAN to effectively bridge the gap between
these domains. However, in all other scenarios (complex-to-
simpler or simpler-to-complex), the shift between the target
domain and the augmented target domain is significantly re-
duced compared to the shift between the source and target
domains, indicating that our CycleGAN successfully trans-
forms the source domain data, thereby reducing the domain
gap.

5.4.2. Data Augmentation for Domain Adaptation

In our experiments, we evaluate our approach by estimating
RUL using DANN and CORAL with and without augmented
data in multiple transfer scenarios that involve different op-
erational conditions and fault types. Both RMSE and score
of all our experiment can be found in Table 3 and Table 4
respectively.

For scenario with lower domain shift (FD001/FD003 to
FD002/FD004), the performance of the augmented configu-
rations closely matches that of the non-augmented ones, with
no significant improvement in RMSE or score (e.g., similar

Source → Target W (S, T ) W (T , Taug)
FD001 → FD002 0.35 0.20
FD001 → FD003 0.04 0.09
FD001 → FD004 0.36 0.15

FD002 → FD001 0.35 0.23
FD002 → FD003 0.33 0.24
FD002 → FD004 0.01 0.11

FD003 → FD001 0.04 0.08
FD003 → FD002 0.33 0.14
FD003 → FD004 0.33 0.19

FD004 → FD001 0.36 0.16
FD004 → FD002 0.01 0.11
FD004 → FD003 0.33 0.10

Table 2. Domain shift evaluation between source and tar-
get domain as well as between target and augmented target.
Lower distance, in bold, correspond to lower domain shift

RMSE before and after augmentation on FD001 → FD002
for both DANN and CORAL).

In contrast, for simpler transfers (FD002/FD004 to
FD001/FD003), augmentation leads to substantial improve-
ments, particularly with DANN. For instance, in the FD002
→ FD001 scenario, the RMSE improves from 33.0 to 27.1,
and the score from 5, 706 to 1, 877.

When the domain shift involves similar operational condi-
tions (FD001/FD003 and FD002/FD004), augmentation also
proves highly effective. Similar to the simpler transfer of
operational conditions, a reduction in fault type complexity
from more complex to simpler domains leads to significant
improvements. For example, in the FD004 → FD002 trans-
fer with DANN, augmentation reduces the RMSE from 40.0
to 23.7 and the score from 18, 885 to 2, 102. Similarly, in the
FD003 → FD001 transfer with DANN, the RMSE improves
from 29.9 to 23.7 and the score from 8, 660 to 1, 729.

Overall, our augmentation technique yields superior results
with the DANN configuration compared to the CORAL con-
figuration. This disparity in performance might be attributed
to DANN’s use of adversarial training to learn domain-
invariant features, enhancing its capability to handle com-
plex, non-linear domain shifts. The augmented data produced
by CycleGAN enriches the target domain, offering DANN a
wider range of examples to align the source and target distri-
butions more effectively. Conversely, CORAL focuses solely
on matching second-order statistics (covariances), which may
not capture the intricate relationships between the domains,
thus limiting its potential to use the augmented data effec-
tively.

6. CONCLUSION

In this paper, we proposed a CycleGAN-based data augmen-
tation technique to enhance the performance of Remaining
Useful Life (RUL) prediction under unsupervised domain
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Source → Target Source only DANN DANN w/ Aug CORAL CORAL w/ Aug
FD001 → FD002 70.4 (±4.2) 55.6 (±1.2) 56.0 (±2.3) 64.0 (±4.8) 64.0 (±1.9)
FD001 → FD003 50.2 (±2.7) 39.8 (±1.5) 37.5 (±1.3) 41.2 (±1.7) 39.2 (±1.0)
FD001 → FD004 69.2 (±8.4) 46.6 (±2.9) 49.2 (±1.7) 55.0 (±6.0) 55.5 (±5.3)

FD002 → FD001 45.2 (±8.8) 33.0 (±5.8) 27.1 (±3.7) 41.1 (±3.3) 42.5 (±1.9)
FD002 → FD003 142.2 (±12.3) 44.5 (±4.0) 42.8 (±2.7) 42.3 (±8.2) 40.3 (±5.0)
FD002 → FD004 47.4 (±3.9) 43.6 (±1.3) 42.2 (±0.5) 55.3 (±6.5) 55.2 (±3.0)

FD003 → FD001 43.6 (±5.2) 29.2 (±2.9) 23.7 (±1.9) 46.9 (±0.8) 44.4 (±1.6)
FD003 → FD002 69.6 (±3.9) 57.1 (±0.6) 57.8 (±1.4) 57.0 (±3.3) 55.7 (±4.1)
FD003 → FD004 70.5 (±5.1) 46.5 (±0.6) 46.2 (±0.4) 57.5 (±1.3) 55.4 (±1.8)

FD004 → FD001 191.3 (±36.4) 41.7 (±13.7) 41.1 (±7.1) 70.6 (±6.7) 68.7 (±5.4)
FD004 → FD002 36.4 (±0.4) 40.0 (±6.9) 23.7 (±0.9) 46.9 (±3.1) 46.3 (±2.9)
FD004 → FD003 147.8 (±17.0) 40.6 (±2.8) 38.8 (±4.4) 48.5 (±1.8) 46.7 (±1.9)

Table 3. RMSE comparison of RUL prediction models applied on the target domain for five approaches: Source Only, DANN,
DANN with CycleGAN-based data augmentation (DANN w/ Aug), CORAL and CORAL with CycleGAN-based data aug-
mentation (CORAL w/ Aug). The results demonstrate that CycleGAN-based augmentation achieves help Adaptation models to
reach best performance in many scenarios. Best scenario between with and without augmentation for both DANN and CORAL
are in bold.

Source → Target Source only DANN DANN w/ Aug CORAL CORAL w/ Aug

FD001 → FD002 > 106 (± > 106) 104,814 (±14, 981) 176, 110 (±20, 858) 158,285 (±25,847) 178, 359 (±23, 847)
FD001 → FD003 159, 850 (±39, 744) 21, 053 (±5, 275) 12,529 (±3, 897) 24, 277 (±1, 523) 23,918 (±1,694)
FD001 → FD004 > 106 (± > 106) 30,165 (±20, 921) 43, 845 (±14, 875) 114,442 (±24,379) 116, 206 (±25, 837)

FD002 → FD001 > 106 (± > 106) 5, 706 (±2, 755) 1,877 (±588) 15,689 (±2,844) 16, 510 (±3, 674)
FD002 → FD003 > 106 (± > 106) 44,270 (±20, 245) 55, 842 (±39, 348) 39, 444 (±4, 118) 34,644 (±4,544)
FD002 → FD004 > 106 (± > 106) 78, 277 (±33, 020) 42,283 (±14, 761) 302, 624 (±33, 198) 293,892 (±89,302)

FD003 → FD001 15, 555 (±11, 790) 8, 660 (±3, 586) 1,729 (±701) 83,567 (±14,017) 85, 266 (±11, 271)
FD003 → FD002 > 106 (± > 106) 90,110 (±15, 470) 105, 995 (±38, 768) 108, 813 (±16, 341) 75,287 (±12,100)
FD003 → FD004 > 106 (± > 106) 60, 062 (±10, 915) 43,845 (±14, 875) 138, 395 (±19, 403) 55,724 (±21,311)

FD004 → FD001 > 106 (± > 106) 26, 908 (±24, 168) 24,081 (±20, 875) 207, 659 (±56, 933) 112,753 (±9,227)
FD004 → FD002 3, 174 (±125) 18, 885 (±8, 182) 2,102 (±360) 107, 919 (±9, 481) 94,439 (±8,119)
FD004 → FD003 > 106 (± > 106) 21, 337 (±7, 408) 18,024 (±5, 459) 135, 745 (±18, 369) 86,446 (±7,172)

Table 4. Score comparison of RUL prediction models applied on the target domain for five approaches: Source Only, DANN,
DANN with CycleGAN-based data augmentation (DANN w/ Aug), CORAL and CORAL with CycleGAN-based data aug-
mentation (CORAL w/ Aug). The results demonstrate that CycleGAN-based augmentation achieves help Adaptation models to
reach best performance in many scenarios. Best scenario between with and without augmentation for both DANN and CORAL
are in bold.

adaptation. Predictive maintenance is critical for improving
operational efficiency and reducing costs, yet models often
struggle with domain shifts due to variations in operational
conditions and data scarcity in the target domain. To address
this, we employed a Wasserstein CycleGAN with Gradient
Penalty (W-CycleGAN-GP) to generate realistic augmented
data in the target domain from source domain data. This aug-
mented data bridges the domain gap, allowing Unsupervised
Domain Adaptation (UDA) models (DANN and CORAL) to
align domains more effectively.

We validated our approach using the C-MAPSS dataset. The
experimental results demonstrated that our proposed method
bridge domain gap and significantly improves the accuracy
of the RUL prediction in most scenarios. UDA models aug-
mented with CycleGAN-generated data achieved lower Root
Mean Square Error (RMSE) and a better Score compared to
both the source-only model and the standard non-augmented
model. The proposed method proved to be effective in han-

dling complex domain shifts, especially in transfers from
more complex to simpler domains, where it significantly im-
proved both RMSE and score(e.g., in the FD004 → FD002
transfer with DANN, RMSE was reduced from 40.0 to 23.7
and the score from 18,885 to 2,102). This underscores the
value of diverse and realistic augmented data in enhancing the
generalization capabilities of UDA models. Future work will
focus on further optimizing the CycleGAN and DANN ar-
chitectures and exploring their applicability to other datasets
from in various industries.
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