Identifying Key Factors in Turbofan Engine Health Degradation using Functional Analysis

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 26, 2023
Declan Mallamo Michael Azarian Michael Pecht

Abstract

A method is presented for predicting the health of turbofan engines using data and simulations from NASA. The method involves estimating engine health using k-nearest neighbors’ regression and fitting a remaining useful life model that considers engine usage. A matching pursuit algorithm identifies key parameters, while functional principal components provide insight into degradation precursors. Model performance is evaluated using root mean square error and future research and applications are discussed.

How to Cite

Mallamo, D., Azarian, M., & Pecht, M. (2023). Identifying Key Factors in Turbofan Engine Health Degradation using Functional Analysis. Annual Conference of the PHM Society, 15(1). https://doi.org/10.36001/phmconf.2023.v15i1.3572
Abstract 162 | Paper (PDF) Downloads 147 Slides (PDF) Downloads 86

##plugins.themes.bootstrap3.article.details##

Keywords

Commercial Modular Aero-Propulsion System Simulation Turbofan Engine model, Functional Orthogonal Matching Pursuit, Functional Principal Component Analysis, Remaining Useful Life Prediction

References
Sun, B., Zeng, S., Kang, R., & Pecht, M. G. (2012). Benefits and challenges of system prognostics. IEEE Transactions on reliability, 61(2), 323-335. doi:10.1109/TR.2012.2194173

An, D., Kim, N. H., & Choi, J. H. (2015). Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliability Engineering & System Safety, 133, 223-236. doi: 10.1016/j.ress.2014.09.014

Wang, D., Miao, Q., & Kang, R. (2009). Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition. Journal of Sound and Vibration, 324(3-5), 1141-1157. doi:10.1016/j.jsv.2009.02.013

Lee, N., Azarian, M. H. & Pecht, M. G. ìAn explainable deep learning-based prognostic model for rotating machineryî doi:10.48550/arXiv.2004.13608

Lall, P. & Thomas, T. (2017). PCA and ICA based prognostic health monitoring of electronic assemblies subjected to simultaneous temperature-vibration loads. In International Electronic Packaging Technical Conference and Exhibition (Vol. 58097, p. V001T03A007). American Society of Mechanical Engineers. doi:10.1115/IPACK2017-74239

Dupuis, R. (2010). ìApplication of oil debris monitoring for wind turbine gearbox prognostics and health managementî. In Annual Conference of the PHM Society, vol. 2, no. 1. doi:10.36001/phmconf.2010.v2i1.1867

Li, X., Li J., Zuo, L., Zhu, L. & Shen, H.T. "Domain adaptive remaining useful life prediction with transformer." IEEE Transactions on Instrumentation and Measurement 71 (2022): 1-13. doi:10.1109/TIM.2022.3200667

Biggio, L., Wieland, A., Chao, M.A., Kastani, I., & Fink, O. "Uncertainty-aware prognosis via deep gaussian process." IEEE Access 9 (2021): 123517-123527. doi:10.1109/ACCESS.2021.3110049

Sun, J., Zuo, H., Wang, W., & Pecht, M. G. (2012). Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance. Mechanical systems and signal processing, 28, 585-596. doi:10.1016/j.ymssp.2011.09.029

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008, October). Damage propagation modeling for aircraft engine run-to-failure simulation. In 2008 international conference on prognostics and health management (p.1-9). IEEE. doi:10.1109/PHM.2008.4711414

Chao, M.A., Kulkarni, C., Goebel, K., & Fink, O. (2021). Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. Data, 6(1), 5. doi:10.3390/data6010005

Frederick, D. K., DeCastro, J. A., & Litt, J. S. (2007). User's guide for the commercial modular aero-propulsion system simulation (C-MAPSS) (No. E-16205).

Srivastava, A. & Klassen, E.P. (2016). Functional Data and Elastic Registration. In: Functional and Shape Data Analysis. Springer Series in Statistics. Springer: New York, NY. doi:10.1007/978-1-4939-4020-2_4

Hong, Y. (2020). scikit-fda: Principal Component Analysis for Functional Data. Bachelor's thesis. Autonomous University of Madrid, Madrid, Spain.
Section
Industry Experience Papers