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ABSTRACT 

This study introduces the Elastic Sparse Functional k-Nearest 

Neighbors approach, a predictive health monitoring frame-
work specifically tailored for turbofan engines. This method 

begins by transforming time-series data into a standardized 
universal flight domain, which is further optimized through 
elastic registration for alignment across varying flight re-

gimes. Standard scaling is employed as a preprocessing step, 
setting the stage for feature dimensionality reduction via 
Functional Principal Components Analysis. To pinpoint the 

features that most significantly impact engine health, the 
method leverages Orthogonal Matching Pursuit in conjunc-

tion with k-Nearest Neighbors to build a sparse regression 
model. The model's performance is assessed using root mean 
square error on test cases derived from the NCMAPSS DS02 

dataset. Recommendations are given based on the interpretive 
results relating to targeting data collection and formulating 

hypotheses for root cause analysis. 

1. INTRODUCTION 

Today, predictive health monitoring is needed to ensure the 
operational integrity and safety of turbofan engines in the 
aerospace industry. Effective predictive modeling can help 

predict rare faults and failures that have occurred in the fleet, 
which has the potential to prevent future failures, reduce the 

time necessary for failure identification, reducing ‘no-fault-
found’ incidents, improving troubleshooting for new 
problems, reducing unscheduled maintenance interruptions, 

and shifting to a more cost efficient conditioned-based 
maintenance strategy to help to forecast engine degradation 
which minimizes unscheduled maintenance and extends the 

service life of the engines. 

The challenge of training efficient fault prognostics models in 

any medium, in accessing representative and informative 

 

data. Poor data quality such as incompleteness, inconsistency 
or inaccuracies and large data volume can hinder effective 
analysis. Bias can be introduced through data collection and 

labeling, leading to difficulty in generalizing results to other 

systems due to large data variation. 

There have been surveys performed on the benefits and 
challenges in implementing prognostic approaches (Sun, 

Zeng, Kang & Pecht, 2012). An informative review was 
written on physics-based and data-driven methods (An, Kim 

& Choi, 2015). For failures associated with most mechanical 
systems, there are physical or chemical processes associated 
with the failure mechanisms, such as corrosion, overstress or 

wearout. In cases where sensory information is limited, 
physical models can help fill in the gaps in the analysis. But 
in cases where physical models must be inferred, and sensor 

information is limited, data-driven models can still be 
developed to make remaining useful life (RUL) predictions 

using a state of health from indirect sensor measurements. 
State-of-health indications have been derived from vibration 
(Wang, Miao & Kang, 2009) (Lee, Azarian & Pecht, 2020), 

temperature (Lall & Thomas, 2017), and oil debris mass 
spectroscopy signals (Dupuis, 2010), and using this 
framework, the underlying degradation process of a physical 

system may be modeled.  A derived mathematical index is 
calculated using a relationship between difference of the 

systems parameters from nominal conditions to the point of 

failure. 

Li, Li, Zuo, Zhu and Shen (2022) found that employing 
domain adaptation to train a model on a well-labeled source 

dataset and adapting it for an unlabeled target dataset, data is 
aligned at both feature and semantic levels to improve 
generalization and accuracy. The dual-level alignment 

process may introduce complexity that could hinder 
straightforward interpretability of the model's predictions (Li 
et al., 2022). Biggio, Weiland, Chao, Kastanis & Fink (2021) 

presented Deep Gaussian process like Deep Sigma Point 
Processes (DSPPs) to enhance standard Gaussian Process 

models by combining deep learning architectures with 
probabilistic methods to provide both accurate predictions 
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and uncertainty quantifications (Biggio et al., 2021). There 
has been research focused on building degradation-based 

prognostics for turbofan engines using a state space model 
(SSM) to describe the system level latent degradation 
dynamics when only various performance data are available 

(Sun, Zuo, Wang and Pecht, 2012) (Saxena, Goebel, Simon & 

Eklund, 2008). 

The present study introduces the Elastic Sparse Functional k-
Nearest Neighbor (ESF-kNN) method, a specialized pipeline 

for predictive health monitoring in turbofan engines. Initially, 
time-series data is transformed into a standardized universal 

flight domain, paving the way for aligning various operational 
regimes through elastic registration. This alignment employs 
a time-warping function to ensure coherent phase 

relationships across different flights. Following alignment, 
standard scaling is applied to normalize the data, facilitating 
the application of Functional Principal Components Analysis 

(FPCA) for dimensionality reduction. The FPCA yields 
principal components that encapsulate the primary modes of 

variability across the flights. After FPCA, Orthogonal 
Matching Pursuit (OMP) is utilized to select a sparse set of 
these principal components, each corresponding to distinct 

engine health parameters and specific aligned flight regimes. 
OMP operates by iteratively choosing features orthogonal to 
the model's residuals, thereby each contributing unique, non-

redundant information. This sparse set of features is then used 
to construct a k-nearest neighbor (k-NN) regression model, 

which employs discrete 3rd-order B-spline interpolations at 
consistent points along the universal flight domain as features. 
The model offers a balance between predictive accuracy and 

computational efficiency. By narrowing the focus to these 
sparse and critical features, ESF-kNN not only enhances 
prediction quality but also affords crucial insights into the 

variables and flight regimes most indicative of engine health. 
This makes the method particularly adept at handling test 

scenarios that feature operational regimes not well-

represented in the training set. 

1.1. Contributions 

This study introduces the ESF-kNN approach, aiming to 

improve predictive health monitoring in turbofan engines. 
One of the key contributions is the effective use of temporal 
domain normalization and elastic functional data registration 

for preprocessing. These steps are designed to tackle the 
specific issue of misaligned time-series data, a common 
challenge in turbofan engine monitoring. Utilizing FPCA for 

dimensionality reduction, the method addresses the high-
dimensionality seen when adapting OMP to work effectively 

with time-series data. This is particularly relevant as OMP is 
generally not well-suited for non-aligned time-series data. 
Combined with k-NN, the ESF-kNN framework aims to 

provide a balanced trade-off between predictive accuracy and 
computational efficiency. The method is validated using the 
NC-MAPSS DS02 data set, showing that it can be used to 

handle unobserved flight regimes. 

In Section 2, a discussion is given for the rationale for 
converting the time domain to a standardized flight interval, 

as well as the advantages of elastic registration for aligning 
functional data. An examination of the role of standard scaling 
in data preprocessing and the application of FPCA for 

reducing feature dimensions is then given followed by the 
combined use of OMP and k-NN for effective feature 

selection. The final segments focus on validating the 
methodology using Root Mean Square Error metrics on select 
test cases from the NCMAPSS DS02 dataset and conclude 

with discussions on the model's generalizability and 

interpretability. 

2. DATA AGGREGATION AND  PROGNOSTICS  

This work develops a prognostic method using data from 

NASA’s Prognostic Center of Excellence. The data was 
generated using a C-MAPSS model simulating a turbofan 
engine's lifecycle with high pressure turbine degradation, 

using real flight data as inputs (Chao, Kulkarni, Goebel & 
Fink, 2021). The DS02 dataset has limits the failure modes to 

only high-pressure turbine efficiency and low-pressure 
turbine efficiency and flow modifications. Fig. 1 shows a 
picture of a large turbofan engine, highlighting the recorded 

input and output parameters. 

 

Fig. 1. Turbofan engine graphic showing positions and 
directions of flow, temperature and pressure measurements 

used in the analysis. 

2.1. NC-MAPSS dataset 

This work develops a prognostic method using data from 
NASA’s Prognostic Center of Excellence. The data was 
generated using a C-MAPSS engine model simulating the 

turbofan engine's lifecycle with high pressure turbine 
degradation (Chao et al., 2021). Real flight conditions were 

recorded on a commercial jet using NASA’s DASHlink 
system and fed as inputs to the NC-MAPSS model (Frederick, 
DeCastro & Litt, 2007). The simulation covers a flight 

envelope, concerning altitude (Alt), Mach number (M), 
throttle-resolver angle (TRA), and total fan inlet temperature 
(T2). A complete set of output parameters with units can be 

found in Table 1. 



Table 1. Output parameters and units. 

Nomenclature Symbol Units 

HPT efficiency modifier HPT_eff_mod % 

LPT efficiency modifier LPT_eff_mod % 

LPT flow modifier LPT_flow_mod % 

Fuel flow Wf pph 

Total temperature at fan inlet T2 oR 

Total temperature at LPC outlet T24 oR 

Total temperature at HPC outlet T30 oR 

Total temperature at LPT outlet T50 oR 

Pressure at fan inlet P2 psia 

Total pressure in bypass duct P15 psia 

Total pressure at HPC outlet P30 psia 

Physical fan speed Nf rpm 

Physical core speed Nc rpm 

Engine pressure ratio (P50/P2) epr --- 

Static pressure at HPC outlet Ps30 psia 

Fuel equivalency ratio 

(Wf/PS30) 

φ pps/psi 

Corrected fan speed NRf rpm 

Corrected core speed NRc rpm 

Bypass ratio bpr --- 

Fuel equivalency ratio for the burner φB --- 

Bleed enthalpy htBleed --- 

Demanded fan speed Nf,dmd rpm 

Corrected demanded fan speed NRf,dmd rpm 

HPT cooling bleed W31 lbm/s 

LPT cooling bleed W32 lbm/s 

Total temperature at HPT outlet T48 oR 

Fan stall margin SmFan --- 

LPC stall margin SmLPC --- 

HPC stall margin SmHPC --- 

The naming conventions and parameters in turbofan engines 
serve specific roles in monitoring and diagnosing the system's 
overall health and efficiency. Parameters prefixed with 'T' are 

temperature measurements at various engine sections. For 
example, T2 is the total temperature at the fan inlet, crucial for 

air intake conditions, while T40 and T48 provide temperatures 
at the High-Pressure Compressor (HPC) and High-Pressure 
Turbine (HPT), vital for thermal efficiency. Similarly, 

parameters with a 'P' prefix indicate pressure levels. P2 
measures the pressure at the fan inlet, essential for air intake 
efficiency. P25 and P50 offer insights into the effectiveness of 

the Low-Pressure Compressor (LPC) and engine exit 
pressure, respectively. Airflow and fuel flow rates are denoted 

by the 'W' prefix. W22 and W40 are the airflow rates at the LPC 
and HPC, necessary for optimal combustion. W48 signifies the 
airflow at the HPT, which is critical for turbine performance. 

W90 typically captures bleed flows for bypass or customer use. 
Lastly, rotational speeds are indicated by 'N', where Nf and Nc 

represent the physical fan and core speeds, respectively. These 
speeds are indicators of the engine's rotational performance, 
affecting compression, combustion, and overall system 

efficiency.  

2.2. Transformation from Time Domain to Universal 

Flight Domain 

The transformation of time series data into a universal flight 

domain, spanning from 0 to 100, serves as a normalization 
step in the preprocessing pipeline for turbofan engine health 
prognosis. This temporal standardization allows for a 

harmonized analytical framework across flights with differing 
durations and operating regimes. To facilitate this 

transformation, each flight's time series is resampled to 
conform to this universal temporal scale. In this study, B-
spline interpolation is employed to carry out this resampling 

process. The B-spline interpolation has the advantage of being 
piecewise-defined, meaning that each polynomial piece is 
defined over a subinterval of the total interval of t. A 

definition of B-splines can be found below in Eq. (1). 

𝑓(𝑡) = ∑𝑃𝑖 𝐵𝑖,𝑘(𝑡)

𝑛

𝑖=0

 

𝐵𝑖,1(𝑡) = {
1,    𝑖𝑓,𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1

0,    otherwise
   

𝐵𝑖,𝑘(𝑡) =
𝑡−𝑡𝑖

𝑡𝑖+𝑘−1−𝑡𝑖
𝐵𝑖,𝑘−1(𝑡) +

𝑡𝑖+𝑘 −𝑡

𝑡𝑖+𝑘−𝑡𝑖+1
𝐵𝑖+1,𝑘−1(𝑡)   (1) 

B-splines are particularly well-suited for this task due to their 
ability to approximate complex data patterns with a 

controllable degree of smoothness, thereby minimizing the 
risk of overfitting or underfitting the data. This high-fidelity 
representation ensures that the inherent variability and trends 

in the original time series are also captured in the resampled 

functional data. 

2.3. Using Elastic Registration on Interpolated Func-

tional Curves for Enhanced Predictive Modeling  

Elastic registration identifies a warping function that, when 
applied to the time domain, aligns curves in such a way as to 
minimize a  loss function (Srivastava & Klassen, 2016). It is 

especially useful in cases where the ‘when’ is less important 
than the ‘what’. Suppose f(t) and g(t) are two functions to be 

registered, the goal of elastic registration is to identify a warp-
ing function, γ(t), that minimizes a distance metric, D, be-

tween f(t) and g(γ(t)), identified below in Eq. (2). 

𝛾∗(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾𝐷 (𝑓(𝑡),𝑔(𝛾(𝑡)))                   (2) 



Where the boundary conditions, γ(0) = 0 and γ(1) = 1, ensure 
that the endpoints are aligned, and γ(t), is a monotonically 
increasing function. The warping function is applied such that  
γ′(t) > 1 increases the time increments and γ′(t) < 1 
decreases them. In this research, the Square Root Velocity 
(SRV) function is differentiable, thus allowing for shape 
comparison using the L2-norm and can be solved using 

dynamic programming. Using the SRV warping function, 

q(t) = √f ′(t), the optimization problem found in Eq. (3) 
becomes: 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∫ (||𝑞(𝑡) − (𝑞𝑔 ∘
1

0

𝛾)(𝑡))||)2𝑑𝑡 (3) 

Where (𝑞𝑔 ∘ 𝛾)(𝑡) signifies the composition of the SRV 

function evaluated for g(t) and the warping function. Once the 
warping function is applied to the time domain of your 
interpolated data, the space is re-gridded to form a new set of 
discrete points.  

2.4. Generalizing State of Health Labels using Geometric 

Mean. 

To combine the different state of health (SoH) labels to create 

a prognostic to work with three types of faults seen in the N-
CMAPSS DS02 dataset, LPT and HPT efficiency 
modifications and LPT Flow modification, the geometric 

mean was used to ensure the universal SoH metric is high 
when all individual SoH metrics are high low when either one 

is low. This is seen in Eq. (4) below. 

  𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑆𝑜𝐻 = (∏ 𝑆𝑜𝐻𝑖
n
i=1 )

1
𝑛                   (4) 

2.5. Standard Scaling of Multivariate Cross-Sectional 

Data. 

The scales of the different parameters associated with 
multivariate cross-sectional data can disproportionately 

influence machine learning algorithms, and standard scaling 
ensures all the variables contribute equally to the resulting 
estimate. The process of standard scaling involves subtracting 

the mean and dividing by the standard deviation for each 

column in the dataset as seen in Eq. (5). 

𝑧 =
𝑥−𝜇

𝜎
                                  (5) 

Subtracting the mean and dividing the result by the standard 

deviation causes the data to have unit spread over the 
distribution. 

2.6. Extending the Features using Derivatives 

The forward finite difference method, seen in Eq. (6) below, 

was used to approximate the derivatives of each of the gas 
path parameter functionals to extend the initial features and 

increase the available information. 

𝑓′(𝑥) =
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
                                 (6) 

2.7. Dimensionality Reduction with Functional Principal 

Component Analysis  

Functional Principal Component Analysis (FPCA) serves as a 

multivariate analytical technique that models variables over 
time through a set of functions, thereby illuminating 
underlying functional relationships. Unlike traditional 

multivariate Principal Component Analysis (PCA), which 
deals with observational data, FPCA works with functional 
data to extract features as functional principal components. 

These components are orthogonal linear combinations of 
continuous functions that capture significant variations in the 

data. 

The mathematical foundation of FPCA lies in the concept of 

inner products. For Euclidean space, the inner product <x,y> 
= xTy  and for L2-space <x,y> = ∫x(t)y(t)dt. Using this form of 

the inner product allows for the generalization of the 

multivariate principal component problem in Eq. (7), below. 

 𝑎𝑟𝑔𝑚𝑖𝑛𝜉1
∑𝑥𝑗 − 𝑥𝑗,𝜉1𝜉1  () 

For multivariate data, the inner product is a  piece-wise linear 
combination of features. Finding the first principal compo-
nent amounts to solving: 

 max𝛽𝑇𝛽=1
1

𝑁
𝛽𝑇 𝑋𝑇𝑋𝛽 () 

The solutions are found by solving the eigenvalue problem, 

Vβ = λ1β where 𝑉 =
1

𝑁
(𝑋𝑇 𝑋) is the sample covariance 

matrix. 

In the functional setting, the covariance operator Vf replaces 
the covariance matrix, defined as: 

 𝑉𝑓(𝑠) = ∫ 𝑣(𝑠, 𝑡)𝑓(𝑡)𝑑(𝑡
𝑇

) () 

Where 𝑣(𝑠,𝑡) = ∑ 𝑥𝑖(𝑠)𝑥𝑖(𝑡)𝑑(𝑡)𝑁
𝑖=1 . The maximization 

problem takes on the following form: 

∫ 𝑣(𝑠, 𝑡)𝛽𝑗(𝑡)𝑑(𝑡) = 𝜆𝑗𝛽𝑗(𝑠), 𝑗 = 1,2, …
𝑇

           (10) 

This equation can be solved using a spectral decomposition 

method seen in Eq. (11), 

 𝑉𝑓 = ∑ 𝜆𝑖(𝑠) < 𝑓,  𝛽𝑗 >∞
𝑖=1  𝛽𝑗 () 

Here, {βj} for an orthonormal basis, each with their respective 
eigenvalue, λi. By extending the concept of multivariate 
principal component analysis, where a high dimension can be 
represented as a low dimension set of principal components 
to functionals, an infinite number of dimensions can be 
reduced to a small finite set which is a significant 
improvement (Hong, 2020). 

2.8. Integrated k-NN-OMP for Turbofan Engine State-

of-Health Monitoring 

Once the FPCA is used to identify the principal components 
accounting for data variability, OMP is then employed to find 

a sparse set of these principal components and corresponding 
universal flight regimes that have the most impact on engine 



performance and degradation. These identified regimes and 
components are further used as inputs to a k-NN regression 

model to predict the engine's SoH. This streamlined approach 
not only enhances prognostic performance but also provides 
insights into critical flight regimes and engine parameters, 

enabling the development of less intrusive and more efficient 

health monitoring systems. 

2.8.1. k-NN Regression 

K-NN regression is a non-parametric method used for 

predicting continuous output variables. Given a query point 
and a set of observed data points, k-NN identifies the k-

nearest neighbors in the feature space and averages their 
output values for prediction. The number of neighbors, k, was 
found using Monte Carlo cross-validation where random 

training/testing Pareto partitions were used to identify the 
optimal value of k. The k-NN regression method can be 

represented using Eq. (12) below.  

�̂� =
1

𝑘
∑ 𝑦𝑖

𝑘
𝑖=1                                (12) 

Where 𝑦, is the predicted output made up of the averages of 

the k-nearest neighbors.  

2.8.2. OPM algorithm 

The core objective of the OPM algorithm is to address an 
under-determined inverse problem, where the aim is to find 

an unknown variable x that satisfies Ax = b, given a "short 
and fat" measurement matrix A and observed data b. In 
practice, the observed data b is often contaminated with noise, 

denoted by ϵ, making the problem more challenging. The 
inverse problem is to work backward to discover what x must 
have been to yield b when multiplied by A, as opposed to the 

generally simpler forward problem of finding b given A and 
x. In this under-determined setting, an infinite number of 

solutions for x exist. However, the focus is on finding an x 
with the fewest non-zero elements, which equates to solving 
a computationally difficult (NP-hard) optimization problem 

that aims to minimize the number of non-zero elements in x 

while still satisfying Ax = b.  

2.9. Hyper parameter optimization 

A method of hyperparameter optimization was used to avoid 

bias in the model and overfitting to the training data. The data 
was split into training and testing sets, and the model was 
trained recursively using Monte Carlo cross-validation where 

random partitions of the training data are to find the optimal 
set of hyperparameters that result in the lowest empirical 

error.  

2.10. Remaining Useful Life Estimation 

Once a state-of-health estimate is reached it can be combined 
with the cycle count data to fit a remaining useful life model, 
by fitting an exponential decay model to SoH measurement 

below in Eq. (13). 

                𝑅𝑈𝐿 = 𝑎 𝑒𝑏 𝑆𝑜𝐻 + 𝑐                         (13) 

2.11. Spearman Correlation Coefficient 

The Spearman rank-order correlation coefficient, often 

denoted as rs, is a non-parametric measure of the strength and 
direction of the relationship between two variables. Unlike 
Pearson's correlation, which requires the data to be normally 

distributed and linearly related, Spearman's correlation only 
assumes that the data can be ranked, given by the following 

formula in Eq. (14). 

                𝑟𝑠 = 1 −
6∑𝑑2

𝑛(𝑛2−1)
                               (14) 

Where n is the number of ranked scores and di is the distance 

between incremental rankings. 

2.12. Algorithm Summary 

In summary, the recorded engine parameters are used to create 
a SoH estimate by combining multiple turbine and flow 
efficiency scores from nominal together using the geometric 

mean. Each time series data is resampled using B-spline 
interpolations to convert to a universal flight domain that goes 
from (0,100). Flight regimes for each parameter are aligned 

to fit with functional representations and combined with the 
SoH estimate to make predictions using k-NN method. An 

orthogonal matching pursuit algorithm determines optimal to 
improve performance, run-time, data management and reduce 
noise, allowing for easier interpretation of results by focusing 

on important variability trends in the parameter waveforms. 
The overall method of evaluating the prognostic is found 

below in Fig. 2. 

 

Fig. 2. Diagram showing overall prognostic method to 

acquire parameters of interest to target failure analysis and 

state of health monitoring. 

3. RESULTS 

The following section presents results obtained from the ESF-

kNN approach applied to the NC-MAPSS DS02 dataset. The 
discussion begins with the impact of preprocessing steps, 

including universal flight domain standardization and elastic 
registration, on feature alignment and standardization. 



Attention then shifts to the feature selection capabilities of 
OMP, highlighting its effectiveness on functionally aligned 

time-series data. Finally, the predictive accuracy of the k-NN 
regression model is evaluated, emphasizing its robustness and 
interpretability in the context of turbofan engine health 

prognosis. 

3.1. Summary of the Key Features after Elastic Registra-

tion, Standardization, and FPCA. 

In Fig. 3, a matrix displays the processed values for each 

parameter and its derivative, each color-coded according to 
their SoH labels. Vertical red dashes within the universal 
flight domain highlight the regions that are most influential in 

determining engine health, as identified by the OMP method. 

 

 
Fig. 3. Conditioned features for the testing data with red vertical marks showing the key features and rankings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



In Fig. 4, individual SoH estimates for testing unit #11, 14, 
and 15 are presented, each accompanied by a one-standard-

deviation empirical confidence interval. Unit #11 exhibits the 
highest performance which could be explained by having 
flights that were closest in similarity to the training data in 

terms of altitude and flight duration. 

 

 
Fig. 4. State of health estimates for the different test data 

units in DS02 dataset. The solid lines indicate the true SoH 
score found using Equation 4 that combines the individual 
low- and high-pressure turbine efficiency and flow health 

scores together and normalizes them. The dashed lines 
signify the predictions with 1 standard deviation empirical 

confidence intervals. 

In Table 2, the root mean squared error for the different SoH 

estimates can be found for both the training and testing data 
from the NCMAPSS DS02 dataset. The ESF-kNN method 
demonstrates robust performance in predictive health 

monitoring of turbofan engines, as evidenced by its root mean 

squared error (RMSE) of the RUL predictions. 

Table 2. Model Performance Metrics ESF-kNN method for 

the training and testing data in the NCMAPSS DS02. 

Unit Label RMSE of SoH (%) 

Training Data 

#2 18+/-4 

#5 15+/-1 

#10 15+/-3 

#16 19+/-6 

#18 24+/-6 

#20 24+/-5 

Testing Data 

#11 21+/-4 

#14 22+/-2 

#15 22+/-7 

 

To contextualize the performance of the ESF-kNN method, 
Table 3 provides a comparative analysis of the RMSE on the 
NCMAPSS DS02 testing data, along with results from 

existing works in the literature. From looking at the 
performance in terms of RMSE, it is evident that the ESF-
kNN method is competitive to less interpretable methods 

found in the literature which underscores its effectiveness and 
potential for broader application in the field of predictive 

health monitoring for turbofan engines. 

 

Fig. 5. Remaining Useful Life Estimates created by curving 

the degradation model of state of health using Eq. (13). 

Table 3. RMSE Comparison of RUL estimates broken down 
to unit and compared to Domain-Adaptive Transformer 

results found in (Li et al., 2022). 

Unit Label RMSE of RUL 
(Cycle) 

Training Data 

#2 3.26+/-0.03 

#5 9.40+/-0.02 

#10 7.87+/-0.06 

#16 3.43+/-0.22 

#18 7.12+/-0.18 

#20 7.17+/-0.06 

Testing Data 

#11 12.54+/-0.28 

#14 21.2+/-0.45 

#15 27.18+/-0.85 

The method of calculating the error documented in (Chao et 
al., 2022), suggests that the training and testing data points 
were chosen such that they were interleaved throughout the 

flights, and not separated into to designated training and 
testing units, per the recommendation in (Chao et al., 2021). 
The original data challenge separates the original training and 

testing data in term of the units, which introduces difficulty 
associated with having many of the flights in the testing data 

that are non-representative in the training data, due to the 
different flight characteristics. For this comparison, the error 
associated with the application of the domain adaptive 

method was derived by averaging the predictions error for 
each of the 7 subset domains adapted onto the DS02 dataset, 

(4.83+5.34+12.02+29.14+31.45+33.23+14.60)/7=18.66).  

 

 



Table 3. RMSE Comparison to values recorded in the 

literature 

Algorithm RMSE (%) Notes 

ESF-kNN 20.30 +/- 0.53 [Proposed method] 

Domain-Adaptive 

Transformer 

18.66 (Li et al., 2022) 

DSPP 7.38 (Chao et al., 2021) 

MCD 7.31 (Chao et al., 2021) 

By incorporating the ESF-kNN method, the performance was 
acquired comparable to existing methods found in the state-
of the art that cannot provide an explanation into the 

underlying features that had the most impact on the prognostic 

performance.  

3.2. Interpretability Insights 

This section delves into the key engine parameters and flight 

regimes identified by the ESF-kNN method. By utilizing 
OMP and k-NN, the approach isolates critical features for 
engine health, enriching our understanding of degradation 

patterns across various operational conditions. Fig. 6 below 

highlights the relative importance of these selected features.  

 
Fig. 6. A ranking of the top 9 most important features 

identified by OMP. 

In Fig. 7 below, each of the highest scored features can be 
seen, centered around their respective flight domain region. 
The most important parameter identified was the stall margin 

for the low-pressure compressor, SmLPC, which was 
identified at the beginning of the flight. This makes sense as 

the Low-Pressure Compressor (LPC) is vital during the initial 
thrust buildup. The LPT cooling bleed, W32, becomes critical at 
72% into the universal flight domain, which from inspection 

occurs upon initial descent. This could be tied to the need for 
effective cooling of the engine's high-pressure components as 
the aircraft prepares for landing, and the operational 

conditions change. The static pressure at the HPC outlet, Ps30 
peaks at around 86% of the universal flight domain, which is 

also within the descent flight mode, and shows a reiterated 

importance score early on at the point of entering the descent 
flight phase. The HPC outlet pressure could be critical for 

maintaining engine stability as the plane descends and air 
pressure changes. The flow through the high-pressure turbine, 
W48 shows a high importance factor which is reiterated in the 

sparse feature set, reaffirming its importance in improving the 
prognostic performance. The features identified occur at 

around 40% in the universal flight domain which is in the 
cruise flight regime. At cruising levels, the engine's efficiency 
is paramount, and the flow out of the high-pressure turbine 

could be a key performance indicator at this point.  

 

Fig. 7. Top nine key features identified through the ESF-
kNN method showing relative flight domain locations. This 

sparsity-based method reduces the feature set from 6400 

((32 features+32 feature derivatives) × 100 interpolated 
points) to just nine key features identified by the vertical red 

lines.  

The fan speed, Nf becomes prominent at 16% of the flight 

phase which is during the climb portion. The fan speed is 
critical here for generating the necessary thrust for the aircraft 
to maintain optimal climb angle. The low-pressure turbine 

output flow, W50 becomes significant during the climb phase 
right after takeoff. At this stage the engine will be at max 
throttle and the flow out of the low-pressure turbine could be 

vital for maintaining thrust and engine efficiency. The 
derivative of the LPC outlet temperature, dT24/dt shows a 
strong influence at approximately 92% of the universal flight 

domain. This could imply that temperature changes in the 
LPC outlet could be indicative of the engine's overall health, 

especially as it prepares for landing. Finally, the low-pressure 
output pressure, P24, plays an important role at 82% of the 
universal flight domain, which is in the middle of the descent 

period. During the descent the engines throttles are brought 
back, to reduce power and prepare for landing. At this stage, 
managing P24 is crucial because it directly affects the balance 

between the engine's efficiency and the required thrust. 

To complement the analysis correlations between the 
identified key features and the different state of health scores 
is given below in Fig. 8. The Spearman correlation matrix 



provides several noteworthy insights into the relationships 
between different engine parameters and the general State of 

Health (SoH). Here, the values close to 1 or -1 indicate a 
strong positive or negative correlation, respectively, while 

values close to zero suggest weak or no correlation. 

 
Fig. 8. Correlations between the identified key features and 
the different state of health scores. The rate of change of the 

fan inlet temperature, P24 and W50 show the greatest 
correlation trends with the general state of health parameter. 

Upon examination of the correlation matrix for the testing 
data, several noteworthy observations are identified. First, the 
correlation between SmLPC and both W32 and W48 is almost 

perfect, standing at 0.99, which suggests that these two 
parameters are practically linearly related, and one could be 
used to predict the other with high accuracy. Next, the 

correlation between HPT_eff_mod, LPT_eff_mod, and 
LPT_flow_mod with General_SoH parameter is all above 0.7, 

which is because they were all used to create the 
General_SOH using Equation 4. Interestingly, P24 shows a 
negative correlation of (-0.88) with W50, and both parameters 

show strong correlation trends with the General_SoH 
parameter. Interestingly, the parameter with the largest 
importance score from the OMP method, the stall margin for 

the low-pressure compressor, taken at initial departure, 
SmLPC, did not show a strong direct correlation the general 

state-of-health score. It is important to know that while the 
Spearman correlation matrix offers valuable insights, it's 
crucial to consider that it may not fully capture the 

multivariate and possibly nonlinear relationships identified in 

more sophisticated predictive models. 

3.3. Future research considerations 

Advanced feature engineering could be a focal area to capture 

intricate patterns especially evident during non-nominal 

flights. Data augmentation techniques may be developed to 
bridge the divergence between testing and training flights, 

thereby enhancing model generalizability. Temporal data 
trends may also be mapped through specialized time-series 
models to understand the incremental evolution of the state-

of-health over time. Adding semantic-level information in the 
training step could improve overall prediction and the 

interpretability by reducing variability in the training and 
testing data. Since turbofan engines are critical safety items, 
more work on the integration of uncertainty quantification 

methods could add a layer of reliability to the predictions. 

4.  CONCLUSION 

The developed method, termed ESF-kNN, employs a sophis-
ticated data preprocessing pipeline that includes B-spline in-

terpolation, elastic registration, standardization, and the com-
putation of derivatives to transform time-series data into a 
functional form conducive for interpretable failure prognos-

tics. The application of functional PCA further refines the fea-
ture set, reducing dimensionality. This processed data then 

feeds into a sparse k-NN algorithm, optimized using Orthog-
onal Matching Pursuit, to identify key parameters and flight 
regimes crucial for predicting Remaining RUL of turbofan en-

gines. The study revealed key insights into the critical engine 
parameters affecting the overall State of Health (SoH) of tur-
bofan engines across various flight regimes. The ESF-kNN 

method efficiently reduces a large 6400-parameter feature set 
to just nine crucial parameters, each associated with specific 

segments of a universal flight domain. These parameters, 
ranging from the stall margin in the Low-Pressure Compres-
sor (SmLPC) to fan speed (Nf) and static pressure at the High-

Pressure Compressor outlet (Ps30), align with intuitive expec-
tations about engine performance at different flight stages. 
For instance, SmLPC is most vital during initial thrust 

buildup, while Ps30 becomes increasingly significant during 
descent, affecting engine stability. The Spearman correlation 

matrix provides further insight into these findings and high-
lights the limitations of relying solely on correlation matrices, 
which might not capture the multivariate and potentially non-

linear relationships revealed by more advanced predictive 

models. 

In terms of future research, the focus could shift towards ad-
vanced feature engineering to capture nuanced patterns, par-

ticularly for non-nominal flights. Developing data augmenta-
tion techniques could mitigate the disparities between training 
and testing flights, thereby enhancing model generalizability. 

Temporal data trends could also be explored via specialized 
time-series models to track the progressive changes in engine 

health. Furthermore, incorporating semantic-level infor-
mation could not only improve the model's predictive accu-
racy but also its interpretability. Given the critical safety im-

plications of turbofan engines, the integration of uncertainty 
quantification methods could provide an added layer of relia-
bility to these prognostics. Through this multifaceted analysis, 



the study paves the way for more targeted, effective, and reli-
able turbofan engine health monitoring, offering avenues for 

both immediate application and future research. 
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