Separated two-phase flow model of cryogenic loading operation

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Dmitry G Luchinskiy Ekaterina Ponizovskaya-Devine Michael Khasin Dogan Timucin Jarred Sass Jose Perotti Barbara Brown

Abstract

We present results of development of separated two-phase cryogenic flow model motivated by NASA plans to mature technology of autonomous cryogenic management on the ground and in space. The solution algorithm is based on the nearly-implicit scheme. We discuss the stability, speed, and accuracy of the algorithm in the context of applications to online health management of cryogenic loading operation. We present the results of validation of the model by comparison with the experimental data obtained during chilldown of the horizontal transfer line obtained at National Bureau of Standards and at the cryogenic testbed in Kennedy Space Center. We demonstrate a good agreement of the model predictions with the experimental data.

How to Cite

G Luchinskiy, D. ., Ponizovskaya-Devine, E. ., Khasin, M. ., Timucin, D. ., Sass, J. ., Perotti, J. ., & Brown, B. . (2015). Separated two-phase flow model of cryogenic loading operation. Annual Conference of the PHM Society, 7(1). https://doi.org/10.36001/phmconf.2015.v7i1.2601
Abstract 50 | PDF Downloads 2

##plugins.themes.bootstrap3.article.details##

Keywords

cryogenic two-phase flow, nearly-implicit method, cryogenic loading operation

References
Berenson, P. (1961). Film-boiling heat transfer from a horizontal surface. Journal of Heat Transfer, 83, 351–358.

Berry, R. A., Peterson, J. W., Zhang, H., Martineau, R. C., Zhao, H., Zou, L., & Andrs, D. (2014).

Relap-7 theory manual [Computer software manual]. Idaho Falls, Idaho 83415.

Bestion, D. (2000, September). The phase appearance and disappearance in the cathare code. Trends in Numerical and Physical Modeling for Industrial Multiphase Flows.

Bouchut, F., Jin, S., & Li, X. (2003). Numerical approximations of pressureless and isothermal gas dynamics [Journal Article]. SIAM Journal on Numerical Analysis, 41(1), 135-158.

Brennan, J. A., Brentari, E. G., & Smith, W. G., R. V.and Steward. (1966). Cooldown of cryogenic transfer lines (Technical Report No. NBS Report 9264). National Bureau of Standards.

Chang, C.-H., & Liou, M.-S. (2007). A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and ausm+-up scheme. Journal of Computational Physics, 225(1), 840 - 873.

Chisholm, D. (1967). A theoretical basis for the Lockhart- Martinelli correlation for two-phase flow [Journal Arti- cle]. International Journal of Heat and Mass Transfer, 10(12), 1767-1778.

Choi, K. Y., Yun, B. J., Park, H. S., Kim, H. D., Kim, Y. S., Lee, K. Y., & Kim, K. D. (2009). Development of a wall-to-fluid heat transfer package for the space code [Journal Article]. Nuclear Engineering and Technology, 41(9), 1143-1156.

Churchill, S. W. (1977). Friction-factor equation spans all fluid-flow regimes [Journal Article]. Chemical Engineering, 84(24), 91-92.

Cordier, F., Degond, P., & Kumbaro, A. (2014). Phase appearance or disappearance in two-phase flows. Journal of Scientific Computing, 58(1), 115-148.

Faghri, A., & Zhang, Y. (2006). Transport phenomena in multiphase systems [Book]. Elsevier Science.

Frost, W., Dzakowic, G. S., & American Society of Mechanical, E. (1967). An extension of the method for predicting incipient boiling on commercially finished surfaces [Book]. New York, N.Y.: ASME.

Ghiaasiaan, S. M. (2008). Two-phase flow, boiling and condensation in conventional and miniature systems [Book]. New York: Cambridge University Press.

Griffith, P. (1975). Counterflow critical heat flux. In Aiche paper, symposium series (Vol. 174). San Francisco: AIChE.

Hafiychuk, V., Foygel, M., Ponizovskaya-Devine, E., Smelyanskiy, V., Watson, M. D., Brown, B., & Goodrich, C. (2014). Moving-boundary model of cryogenic fuel loading, i: Two-phase flow in a pipe [Journal Article]. Journal of Thermophysics and Heat Transfer, 1-12.

Holman, J. P. (1989). Heat transfer [Book]. McGraw-Hill. Iloeje, O. C., Plummer, D. N., Rohsenow, W. M., & Grif- fith, P. (1982). Effects of mass flux, flow quality, thermal and surface properties of materials on rewet of dispersed flow film boiling. Journal of Heat Transfer,104(2), 304-308.

Ishii, M., & Hibiki, T. (2010). Thermo-fluid dynamics of two-phase flow. Bcher: Springer.

Kattan, N., Thome, J. R., & Favrat, D. (1998). Flow boiling in horizontal tubes: Part 1 - development of a diabatic two-phase flow pattern map [Journal Article]. Journal of Heat Transfer-Transactions of the Asme, 120(1), 140-147.

Konishi, C., & Mudawar, I. (2015). Review of flow boiling and critical heat flux in microgravity. International Journal of Heat and Mass Transfer, 80(0), 469-493.

Luchinsky, D. G., Smelyanskiy, V. N., & Brown, B. (2014a).Physics-based model for cryogenic chilldown and loading. part i: Algorithm (Technical Publication No. NASA/TP-2014-216659). NASA, ARC.

Luchinsky, D. G., Smelyanskiy, V. N., & Brown, B. (2014b). Physics based model for cryogenic chilldown and loading. part ii: Verification and validation (Technical Publication No. NASA/TP-2014-218298). NASA, ARC.

Luchinsky, D. G., Smelyanskiy, V. N., & Brown, B. (2014c).Physics based model for cryogenic chilldown and loading. part iv: Code structure (Technical Publication No. NASA/TP-2014-218399). NASA, ARC.

Nellis, G., & Klein, S. (2009). Heat transfer [Book]. Cam- bridge University Press.

Nourgaliev, R., & Christon, M. (2012). Solution algorithms for multi-fluid-flow averaged equations (Technical Report No. INL/EXT-12-27187). Idaho, US.

Prosperetti, A., & Tryggvason, G. (2007). Computational methods for multiphase flow [Book]. Cambridge University Press.

RELAP5:1. (2012). Relap5-3d code manual volume I: Code structure, system models, and solution methods (Computer software manual No. INEEL-EXT-98-00834). INEL.

RELAP5:4. (2012). Relap5-3d code manual volume iv: Models and correlations (Computer software manual No.INEEL-EXT-98-00834).

Robert, J., William, N., Kelly, C., & Evelyn, O.-S. (2012). Integrated ground operations demonstration units testing plans and status [Book Section]. In Aiaa space 2012 conference & exposition. American Institute of Aeronautics and Astronautics.

Staedtke, H. (2006). Gasdynamic aspects of two-phase flow: Hyperbolicity, wave propagation phenomena and related numerical methods. Wiley.

Steiner, D., & Kind, M. (2010). Vdi heat atlas. In V.-G. V. u. Chemieingenieurwesen & V. Gesellschaft (Eds.), (2nd ed., pp. 796–800). Heidelberg: Springer- Verlag.

Tong, L. S., & Tang, Y. S. (1997). Boiling heat transfer and two-phase flow [Book]. Taylor & Francis.

TRACE5. (2007). Trace v5.0 theory manual field equations, solution methods, and physical models [Computer software manual].

Wallis, G. B. (1969). One-dimensional two-phase flow [Book]. McGraw-Hill.

Wojtan, L., Ursenbacher, T., & Thome, J. R. (2005). Investigation of flow boiling in horizontal tubes: Part i - a new diabatic two-phase flow pattern map [Journal Arti- cle]. International Journal of Heat and Mass Transfer, 48(14), 2955-2969.

Zeldovich, Y. (1970). Gravitational instability: An Approximate theory for large density perturbations. Astron.Astrophys., 5, 84-89.

Zuber, N., & Tribus, M. (1958). Further remarks on the stability of boiling (Report No. 58-5). UCLA.
Section
Technical Papers