Inferential framework for autonomous cryogenic loading operations

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 2, 2017
Dmitry G Luchinskiy Michael Khasin Dogan Timucin Jarred Sass Jose Perotti Barbara Brown

Abstract

We address the problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards the solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA Kennedy Space Center. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.

How to Cite

Luchinskiy, D. G., Khasin, M., Timucin, D., Sass, J., Perotti, J., & Brown, B. (2017). Inferential framework for autonomous cryogenic loading operations. Annual Conference of the PHM Society, 9(1). https://doi.org/10.36001/phmconf.2017.v9i1.2306
Abstract 252 | PDF Downloads 206

##plugins.themes.bootstrap3.article.details##

Keywords

two-phase flow, autonomous cryogenic operations, dynamical inference

References
Angeli, C., & Chatzinikolaou, A. (2004). On-line fault detection techniques for technical systems: A survey. International Journal of Computer Science & Applications, 1(1), 12–30.
Berenson, P. (1961). Film-boiling heat transfer from a horizontal surface. Journal of Heat Transfer, 83, 351–358.
Carbajo, J. J. (1985). A study on the rewetting temperature [Journal Article]. Nuclear Engineering and Design, 84(1), 21-52.
Chato, D. J. (2008). Cryogenic fluid transfer for exploration. Cryogenics, 48(5-6), 206–209.
Chung, J. N., & Yuan, K. (2015). Recent Progress on Experimental Research of Cryogenic Transport Line Chilldown Process. Frontiers in Heat and Mass Transfer, 6.
Crowley, C. J., & Izenson, M. (1989). Design manual for microgravity two-phase flow and heat transfer (u) (Technical Report No. AL-TR-89-027). Air Force Astronautics Laboratory.
Cullimore, B. A. (1998). Optimization and automated data correlation in the nasa standard thermal/fluid system analyzer. In Proceedings 33rd intersociety engineering conference on energy conversion.
Darr, S., Dong, J., Glikin, N., Hartwig, J., Majumdar, A., Leclair, A., & Chung, J. (2016, oct). The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown. Npj Microgravity, 2, 16033.
Darr, S. R., Hu, H., Glikin, N., Hartwig, J. W., Majumdar, A. K., Leclair, A. C., & Chung, J. N. (2016b, dec). An experimental study on terrestrial cryogenic tube chilldown II. Effect of flow direction with respect to gravity and new correlation set. International Journal of Heat and Mass Transfer, 103, 1243–1260.
Darr, S. R., Hu, H., Glikin, N. G., Hartwig, J. W., Majumdar, A. K., Leclair, A. C., & Chung, J. N. (2016a, dec). An experimental study on terrestrial cryogenic transfer line chilldown I. Effect of mass flux, equilibrium quality, and inlet subcooling. International Journal of Heat and Mass Transfer, 103,1225–1242.
Darr, S. R., Hu, H., Shaeffer, R., Chung, J., Hartwig, J. W., & Majumdar, A. K. (2015). Numerical simulation of the liquid nitrogen chilldown of a vertical tube [Book Section]. In 53rd aiaa aerospace sciences meeting. American Institute of Aeronautics and Astronautics.
Duggento, A., Luchinsky, D. G., Smelyanskiy, V. N., & McClintock, P. V. E. (2009). Inferential framework for non-stationary dynamics: theory and applications. Journal of Statistical Mechanics-Theory and Experiment.
Faghri, A., & Zhang, Y. (2006). Transport phenomena in multiphase systems [Book]. Elsevier Science.
Franchello, G. (1993). Development of a heat transfer package applicable to a large variety of fluids (Scientific and Technical Research Reports No. EUR 14985 EN). European Commission.
Frost, W., & Dzakowic, G. S. (1967). An extension of the method for predicting incipient boiling on commercially finished surfaces. ASME, 67-HT-61.
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459.
Ghiaasiaan, S. (2007). Two-phase flow, boiling, and condensation: In conventional and miniature systems [Book]. Cambridge University Press.
Griffith, P. (1957). The correlation of nucleate boiling burnout data (Report No. NS-035-267). Massachusetts Institute of Technology.
Groeneveld, D. C., & Rousseau, J. C. (1983). Chf and postchf heat transfer : An assessment of prediction methods and recommendations for reactor safety codes [Book Section]. In S. Kakac¸ & M. Ishii (Eds.), Advances in two-phase flow and heat transfer (Vol. 63, p. 203-237). Springer Netherlands.
Hafiychuk, V., Foygel, M., Ponizovskaya-Devine, E., Smelyanskiy, V., Watson, M. D., Brown, B., & Goodrich, C. (2015). Moving-boundary model of cryogenic fuel loading, ii: Theory versus experiments [Journal Article]. Journal of Thermophysics and Heat Transfer, 1-6.
Hartwig, J. W., & Vera, J. (2015, jun). Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line. In 53rd aiaa aerospace sciences meeting. American Institute of Aeronautics and Astronautics.
Hedayatpour, A., Antar, B., & Kawaji, M. (1990, jul). Analytical and numerical investigation of cryogenic transfer line chilldown. In 26th joint propulsion conference. American Institute of Aeronautics and Astronautics.
Holman, J. P. (1989). Heat transfer [Book]. McGraw-Hill.
Huang, L. (2009). Evaluation of onset of nucleate boiling models. In Eci international conference on boiling heat transfer (Vol. 40, p. 40079216). INUS.
Iloeje, O. C., Plummer, D. N., Rohsenow, W. M., & Griffith, P. (1982). Effects of mass flux, flow quality, thermal and surface properties of materials on rewet of dispersed flow film boiling [Journal Article]. Journal of Heat Transfer, 104(2), 304-308. (10.1115/1.3245088)
Jackson, J. K. (2006). Cryogenic two-phase flow during chilldown: Flow transition and nucelate boiling heat transfer (PhD Thesis). University of Florida.
Johnson, R., Notardonato, W., Currin, K., & Orozco-Smith, E. (2012, may). Integrated Ground Operations Demonstration Units Testing Plans and Status. In Aiaa space 2012 conference & exposition. American Institute of Aeronautics and Astronautics.
Kashani, A., Luchinskiy, D. G., Ponizovskaya-Devine, E., Khasin, M., Timucin, D., Sass, J., . . . Brown, B. (2015). Optimization of cryogenic chilldown and loading operation using sinda/fluint. IOP Conference Series: Materials Science and Engineering, 101(1), 012115.
Kashani, A., Ponizhovskaya, E., Luchinsky, D., Smelyanskiy, V., Sass, J., Brown, B., & Patterson-Hine, A. (2014). Physics based model for online fault detection in autonomous cryogenic loading system [Journal Article]. AIP Conference Proceedings, 1573(1), 1305-1310.
Kawaji, M. (1996, jun). Boiling heat transfer during quenching under microgravity. In Fluid dynamics conference. American Institute of Aeronautics and Astronautics.
Kim, S.-m., & Mudawar, I. (2014). Review of databases and predictive methods for heat transfer in condensing and boiling mini / micro-channel flows. International Journal of Heat and Mass Transfer, 77, 627–652.
Kodali, A., Ponizovskaya, E., Robinson, P., Luchinsky, D. G., Bajwa, A., Khasin, M., . . . Brown, B. (2015, oct). Dmatrix based fault modeling for cryogenic loading systems. In Annual conference of the prognostics and health management society 2015 (p. 1-10). Prognostics and Health Management Society.
Konishi, C., & Mudawar, I. (2015a). Review of flow boiling and critical heat flux in microgravity [Journal Article]. International Journal of Heat and Mass Transfer, 80, 469-493.
Konishi, C., & Mudawar, I. (2015b). Review of flow boiling and critical heat flux in microgravity. International Journal of Heat and Mass Transfer, 80, 469–493.
Kutateladze, S. S. (1959). Critical heat flux to flowing, wetting, subcooled liquids. Energetika, 2, 229–239.
Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2013). NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport properties-REFPROP, Version 9.1, National Institute of Standards and Technology.
Luchinskiy, D. G., Ponizovskaya-Devine, E., Hafiychuk, V., Kashani, A., Khasin, M., Timucin, D., . . . Brown, B. (2015). Hierarchy of two-phase flow models for autonomous control of cryogenic loading operation [Journal Article]. IOP Conference Series: Materials Science and Engineering, 101(1), 012069.
Luchinsky, D., Khasin, M., Timucin, D., Sass, J., & Brown, B. (2016, December). Inferential framework for twofluid model of cryogenic chilldown. ArXiv e-prints.
Luchinsky, D. G., Khasin, M., Timucin, D., Sass, J., Johnson, R. G., Perotti, J., & Brown, B. (2016). Physics based model for cryogenic chilldown and loading. part iii: Correlations (NASA/TM-2016-219093 No. NASA/TP-2016). NASA, ARC.
Luchinsky, D. G., Khasin, M., Timucin, D., Sass, J., Perroti, J., & Brown, B. (2017). Inferential framework for two-fluid model of cryogenic chilldown. International Journal of Heat and Mass Transfer, 114, 796 - 808.
Luchinsky, D. G., Ponizovskaya-Devine, E., Khasin, M., Kodali, A., Perotti, J., Sass, J., & Brown, B. (2015, jan). Two-phase flow modelling of the cryogenic propellant loading system. In 51st aiaa/sae/asee joint propulsion conference (p. 4214). American Institute of Aeronautics and Astronautics.
Luchinsky, D. G., Smelyanskiy, V. N., & Brown, B. (2014a). Physics based model for cryogenic chilldown and loading. part i: Algorithm (Technical Publication No. NASA/TP-2014-216659). NASA, ARC.
Luchinsky, D. G., Smelyanskiy, V. N., & Brown, B. (2014b). Physics based model for cryogenic chilldown and loading. part ii: verification and validation
(NASA/TP-2014-218298 No. NASA/TP-2014). NASA, ARC.
Luchinsky, D. G., Smelyanskiy, V. N., & Brown, B. (2014c). Physics based model for cryogenic chilldown and loading. part iv: Code structure (Technical Publication No. NASA/TP-2014-218399). NASA, ARC.
Majumdar, A., & Steadman, T. (2003, jul). Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines. In 33rd international conference on environmental systems (Vol. 3). Vancouver, B.C.: Society of Automotive Engineers.
Majumdar, A. K., & Ravindran, S. S. (2010). Fast, nonlinear network flow solvers for fluid and thermal transient analysis. International Journal of Numerical Methods for Heat & Fluid Flow, 20(6-7), 617–637.
Nellis, G., & Klein, S. (2009). Heat transfer [Book]. Cambridge University Press.
Notardonato, W. (2012, jun). Active control of cryogenic propellants in space. Cryogenics, 52(46), 236–242.
Ponizovskaya, E., Luchinsky, D., Kodali, A., Khasin, M., Timucin, D., Sass, J., . . . Brown, B. (2015, oct). Fault diagnostics and evaluation in cryogenic loading system using optimization algorithm. In Annual conference of the prognostics and health management society 2015 (p. 1-9). Prognostics and Health Management Society.
Ponizovskaya-Devine, E., Luchinsky, D. G., Khasin, M., Perotti, J., Sass, J., & Brown, B. (2015a, jan). Towards physics based autonomous control of the cryogenic propellant loading system. In 51st aiaa/sae/asee joint propulsion conference (p. 4215). American Institute of Aeronautics and Astronautics.
Ponizovskaya-Devine, E., Luchinsky, D. G., Khasin, M., Perotti, J., Sass, J., & Brown, B. (2015b, jul). Towards physics based autonomous control of the cryogenic propellant loading system. In 51st aiaa/sae/asee joint propulsion conference. American Institute of Aeronautics and Astronautics.
RELAP5-3D-I. (2012). Code manual volume I: Code structure, system models, and solution methods [Computer software manual].
RELAP5-3D-IV. (2012). Code manual volume IV: Models and correlations (Computer software manual No. INEEL-EXT-98-00834).
Sato, T., & Matsumura, H. (1964). On the conditions of incipient subcooled-boiling with forced convection. Bulletin of JSME, 7(26), 392-398.
Seader, J. D., Miller, W. S., , & Kalvinskas, L. A. (1965). Boiling heat transfer for cryogenics (NASA Technical Report No. NASA CR-243).
Shahs, M. M. (2006, oct). Evaluation of General Correlations for Heat Transfer During Boiling of Saturated Liquids in Tubes and Annuli. HVAC&R Research, 12(4), 1047–1063.
Sheppard, J. W., & Simpson, W. R. (1996). Improving the accuracy of diagnostics provided by fault dictionaries [Conference Proceedings]. In Vlsi test symposium, 1996., proceedings of 14th (p. 180-185).
Smelyanskiy, V. N., Luchinsky, D. G., Millonas, M. M., & McClintock, P. V. E. (2009). Recovering ’lost’ information in the presence of noise: application to rodentpredator dynamics. New Journal of Physics, 11.
Theler, G., & Freis, D. (2011). Theoretical critical heat flux prediction based on non-equilibrium thermodynamics considerations of the subcooled boiling phenomenon. In O. Moller, J. W. Signorelli, & M. A. Storti (Eds.), Mecnica computacional (Vol. XXX, p. 1713-1732).
Tong, L. S., & Tang, Y. S. (1997). Boiling heat transfer and two-phase flow [Book]. Taylor & Francis.
TRACE-V5.0. (2007). Theory manual field equations, solution methods, and physical models [Computer software manual].
Wojtan, L., Ursenbacher, T., & Thome, J. R. (2005). Investigation of flow boiling in horizontal tubes: Part i - a new diabatic two-phase flow pattern map [Journal Article]. International Journal of Heat and Mass Transfer, 48(14), 2955-2969.
Yuan, K., Ji, Y., & Chung, J. N. (2007). Cryogenic chilldown process under low flow rates [Journal Article]. International Journal of Heat and Mass Transfer, 50(19-20), 4011-4022. (Times Cited: 6 Yuan, Kun Ji, Yan Chung, J. N. 7)
Yuan, K., Ji, Y., & Chung, J. N. (2009). Numerical modeling of cryogenic chilldown process in terrestrial gravity and microgravity [Journal Article]. International Journal of Heat and Fluid Flow, 30(1), 44-53. (Times Cited: 3 Yuan, Kun Ji, Yan Chung, J. N. 4)
Zuber, N., & Tribus, M. (1958). Further remarks on the stability of boiling (Report No. 58-5). UCLA.
Section
Technical Research Papers

Most read articles by the same author(s)