References
Albrecht, P. F., Appiarius, J. C., & Shrama, D. K. (1986). Assessment of the reliability of motors in utility applications. IEEE Transactions of Energy Conversion, EC-1, 39-46.
Antoni, J., & Randall, R. B. (2003). A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. Journal of Vibration and Acoustics, 125(3), 282-289.
Berkes, P., & Fiser, J. (2011). A frequentist two-sample test based on Bayesian model selection. ArXiv e-prints.
Borghesani, P., Ricci, R., Chatterton, S., & Pennacchi, P. (2013). Diagnostic of rolling element bearings with envelope analysis in non-stationary conditions. In Condition Monitoring of Machinery in Non-Stationary Operations.
Boškoski,P.,&Juričić, Ð.(2011,September).Point processes for bearing fault detection under non-stationary operating conditions. In Annual Conference of the Prognostics and Health Management Society (pp. 427– 434). Montreal, QC, Canada.
Boškoski, P., & Juričić, Ð. (2012a). Fault detection of mechanical drives under variable operating conditions based on wavelet packet Rényi entropy signatures. Mechanical Systems and Signal Processing, 31, 369— 381.
Boškoski,P.,&Juričić, Ð.(2012b).RényiEntropyBased Statistical Complexity Analysis for Gear Fault Prognostics under Variable Load. In T. Fakhfakh, W. Bartel- mus, F. Chaari, R. Zimroz, & M. Haddar (Eds.), Condition Monitoring of Machinery in Non-Stationary Operations (p. 25-32). Springer Berlin Heidelberg.
Chhikara, R., & Folks, J. L. (1989). The Inverse Gaussian Distribution, Theory, Methodology, and Applications (Vol. 59). New York: Marcel Dekker.
Cocconcelli, M., Bassi, L., Secchi, C., Fantuzzi, C., & Rubini, R. (2012). An algorithm to diagnose ball bearing faults in servomotors running arbitrary motion profiles. Mechanical Systems and Signal Processing, 27(0), 667 - 682.
Combet, F., & Zimroz, R. (2009). A new method for the estimation of the instantaneous speed relative fluctuation in a vibration signal based on the short time scale transform. Mechanical Systems and Signal Processing, 23(4), 1382 - 1397.
Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia: SIAM.
Desmond, A. F., & Chapman, G. R. (1993). Modelling Task Completion Data with Inverse Gaussian Mixtures. Journal of the Royal Statistical Society. Series C (Ap- plied Statistics), 42(4), 603–613.
Desmond, A. F., & Yang, Z. L. (2011). Score tests for in- verse Gaussian mixtures. Applied Stochastic Models in Business and Industry, 27(6), 633–648. Available from http://dx.doi.org/10.1002/asmb.876
Folks, J. L., & Chhikara, R. S. (1978). The Inverse Gaussian Distribution and Its Statistical Application–A Review. Journal of the Royal Statistical Society. Series B (Methodological), 40(3), 263–289.
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1(3), 515—533.
Heyns, T., Godsill, S., Villiers, J. de, & Heyns, P. (2012). Statistical gear health analysis which is robust to fluctuating loads and operating speeds. Mechanical Systems and Signal Processing, 27(0), 651 - 666.
Lehmann, E., & Casella, G. (1998). Theory of Point Estimation (2nd ed.). New York: Springer – Verlag.
Lemeshko, B. Y., Lemeshko, S. B., Akushkina, K. A., Nikulin, M. S., & Saaidia, N. (2010). Mathematical and Statistical Models and Methods in Reliability: Applications to Medicine, Finance, and Quality Contro. In V. Rykov, N. Balakrishnan, & M. Nikulin (Eds.), (1st ed., pp. 433–453). Birkhäuser Boston.
MacKay, D. J. C. (2005). Information Theory, Inference, and Learning Algorithms (4th ed.). Cambridge University Press.
Matthews, M. V., Ellsworth, W. L., & Reasenberg, P. A. (2002). A Brownian Model for Recurrent Earthquakes. Bulletin of the Seismological Society of America, 92(6),