References
He, D., Li, R., Zade, M., & Zhu, J. (2011). A data mining based full ceramic bearing fault diagnostic system using AE sensors. IEEE Transactions on Neural Networks, 22(12), 2022-2031. https://doi.org/10.1109/TNN.2011.2172803.
Chen, Y., Wang, Y., Liu, Y., Xu, Z., & Darrell, T. (2020). A new Meta-Baseline for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1193411943). https://doi.org/10.1109/CVPR42600.2020.01193
Chen, T., Liu, S., Kira, Z., Wang, Y., & Huang, J. (2019). A closer look at few-shot classification. In Proceedings of the International Conference on Learning Representations (ICLR). Retrieved from https://openreview.net/forum?id=HkxLXnAcFQ.
Feng, Y., Chen, J., Xie, J., Zhang, T., Lv, H., & Pan, T. (2022). Meta-learning as a promising approach for fewshot cross-domain fault diagnosis: Algorithms, applications, and prospects. Knowledge-Based Systems, 237, 107165. https://doi.org/10.1016/j.knosys.2021.107165.
Hu, S. X., Li, D., Stühmer, J., Kim, M., & Hospedales, T. M. (2019). Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1180311812). doi: 10.1109/CVPR.2019.01206
Ren, M., Zhai, D., & Yang, B. (2020). Few-shot learning with global class representations. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 9195-9204.
Chen, Q., & Li, Z. (2020). Few-shot learning with auxiliary classifier generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 10660-10669.
Ko, T., Krishnamurthy, J., Aluru, S., & Chang, S. F. (2020). Learning representations for few-shot learning with deep convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, 31(7), 2342-2355.
Lee, J. Y., & Park, J. (2021). Few-shot learning with metatransformer. IEEE Transactions on Multimedia, 23, 2573-2583.
Liu, X., Zhang, Y., Liu, Y., Li, H., & Li, Z. (2021). Metalearning as a promising approach for few-shot crossdomain fault diagnosis: Algorithms, applications, and prospects. Neurocomputing, vol. 449, pp. 93-103. https://doi.org/10.1016/j.neucom.2021.05.086.
Yan, Y., Liu, Y., Liu, X., Chen, Y., Peng, Y., & Li, X. (2021). Few-shot learning under domain shift: Attentional contrastive calibrated transformer of time series for fault diagnosis under sharp speed variation. IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2834-2844.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf.
G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto, "A Baseline for Few-Shot Image Classification," in Proceedings of the International Conference on Learning Representations (ICLR), 2020.