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ABSTRACT 

Full ceramic bearings are critical components in many full 

ceramic and oil-free food processing and medical 

equipment. Developing effective full ceramic fault 

diagnostic methods is important.  Supervised deep learning 

approaches have been considered promising for fault 

diagnosis in the era of big data where abundantly labelled 

datasets are available.  However, in many industrial 

applications, datasets with fault labels are rare.  This 

challenge has motivated the task for developing deep 

learning approaches for fault diagnosis with few training 

examples.  To meet the challenge, one attractive direction is 

to use available pre-trained deep learning architectures to do 

fault diagnosis with only few examples.  Specifically, this 

paper investigates the effectiveness of using pre-trained 

deep learning architectures successfully used in natural 

language processing to achieve few-shot learning for full 

ceramic bearing fault diagnosis using acoustic emission 

signals. 

1. INTRODUCTION 

The use of full ceramic bearings has grown significantly in 

recent years, with more and more industries adopting them 

for their superior performance and durability.  Here are a 

few examples: (1) Semiconductor manufacturing 

equipment, where their non-conductive properties prevent 

electrical interference and ensure consistent, high-quality 

processing. (2) Chemical processing applications, where 

they can withstand high temperatures, corrosive chemicals, 

and other harsh operating conditions. (3) Ceramic bearings 

are widely used in high-speed rotating machinery due to 

their excellent mechanical properties. (4) Food and beverage 

processing equipment, where their non-toxic properties 

ensure product purity and prevent contamination. (5) 

Medical equipment, such as surgical tools and imaging 

equipment, where their non-magnetic and non-conductive 

properties make them ideal for use in MRI machines and 

other sensitive medical applications.  However, full ceramic 

bearings are vulnerable to faults such as cracks, spalls, and 

wear, which can cause catastrophic failures and downtime. 

Early fault diagnosis is crucial for preventing costly 

equipment failures and ensuring safe and reliable operation. 

Acoustic emission (AE) signals generated by the bearing 

during operation have been proven to be effective in 

detecting bearing faults. However, traditional machine 

learning algorithms require a large amount of labeled data 

for training, which is time-consuming and expensive to 

collect. Few-shot learning, which aims to learn from a few 

labeled examples, has recently emerged as a promising 

solution to this problem. 

In this paper, we propose a few-shot learning approach for 

full ceramic bearing fault diagnosis with AE signals. 

Specifically, we use pre-trained deep structures successfully 

used in natural language processing (NLP) like GPT2 to 

train a classifier with extracted AE features on a small 

number of labeled examples. 

To the best of our knowledge, this is the first attempt to 

apply pre-trained NLP deep structures to few-shot learning 

for full ceramic bearing fault diagnosis with AE signals. We 

evaluate our approach on a full ceramic bearing seeded fault 

dataset collected from a bearing test rig in the laboratory. 

The rest of the paper is organized as follows. Section II 

provides a brief overview of the related work. Section III 

describes the proposed approach in detail. Section IV 

presents the experimental setup and results. Finally, we 

conclude the paper in Section V. 
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2. RELATED WORK 

2.1. Few-shot Learning for Fault Diagnosis 

The goal of few-shot learning for fault diagnosis is to 

diagnose faults in a system or machine with high accuracy 

using only a small amount of labelled data.  Typically, few-

shot learning for fault diagnosis involves using transfer 

learning, domain adaptation, and meta-learning.  Transfer 

learning can be used to transfer knowledge learned from one 

domain to another, while domain adaptation can be used to 

adapt a model trained on one domain to another. Meta-

learning can be used to learn how to learn, enabling a model 

to quickly adapt to new domains with few samples. 

One of the popular few-shot learning methods is K-way N-

shot learning, which is used to classify new samples based 

on a small set of labeled samples (N) taken from K different 

categories. 

Liu et al. (2021) conducted a survey on meta-learning for 

few-shot cross-domain fault diagnosis.  Their paper 

provides an overview of various algorithms, including 

model-agnostic meta-learning (MAML), Reptile, and 

Prototypical Networks, which have been shown to be 

effective in adapting to new fault diagnosis tasks with 

limited labeled data.  It suggests that meta-learning has great 

potential for few-shot cross-domain fault diagnosis.  Feng et 

al. (2022) explored the use of meta-learning for fault 

diagnosis.  The paper reviews various meta-learning 

algorithms and their applications in fault diagnosis across 

different domains, such as manufacturing, aerospace, and 

automotive industries.  The authors also discussed the 

prospects of meta-learning for fault diagnosis and 

highlighted some of the challenges that need to be addressed 

to make this approach more practical and effective. For 

example, they pointed out that the lack of labeled data and 

the high cost of obtaining it are significant barriers to the 

adoption of meta-learning in industrial settings.  Yan et al. 

(2021) proposed a few-shot learning framework for fault 

diagnosis in industrial machine.  The proposed framework is 

based on a transformer architecture with attention 

mechanisms and uses contrastive learning to learn a feature 

representation that can discriminate between normal and 

faulty conditions. It is trained on a small labeled dataset and 

can quickly adapt to new machines with few labeled 

samples.  Domain shift caused by changes in machine speed 

can be handled by the proposed framework.  Hu et al. 

(2019) explored the use of external data and fine-tuning for 

improving the performance of few-shot learning pipelines.  

They found that fine-tuning the image encoder on the target 

task can improve performance of few-shot learning.   

In our proposed approach, we use K-way N-shot learning 

with a pre-trained NLP deep structure to train a classifier 

with extracted AE features on a small number of labeled 

examples for ceramic bearing fault diagnosis. By leveraging 

the power of the pre-trained NLP deep structure and K-way 

N-shot learning, we can effectively diagnose faults in 

ceramic bearings with minimal labeled data. 

2.2. Pre-trained NLP Architectures 

Recent advances in NLP have shown the effectiveness of 

pre-trained deep structures in various tasks such as text 

generation, translation, and sentiment analysis. The 

Generative Pre-trained Transformer 2 (GPT2) with a 

transformer structure is a state-of-the-art pre-trained 

language model that has achieved impressive results in 

many NLP benchmarks (Radford et al. 2018, Radford et al. 

2019, Brown et al. 2020). 

GPT2 uses a multi-layer transformer decoder to generate 

high-quality text. The model is trained on a large corpus of 

text data and learns to predict the next word in a sequence 

based on the context of the previous words (see GPT2 

structure shown in Figure 1). This approach enables the 

model to capture the semantic and syntactic structures of 

natural language and generate coherent and diverse text. 

 

Figure 1.  The structure of GPT2 (Wikipedia) 

 

Inspired by the success of pre-trained deep structures in 

NLP, researchers have applied similar techniques to other 

domains such as computer vision and audio processing. 

Few-shot learning is one such area where pre-trained deep 

structures have shown promising results (Ren et al. 2020, 

Chen and Li 2020, Ko et al. 2020, Lee and Park 2021). 
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In our proposed approach, we leverage the power of GPT2 

with extracted AE features to achieve few-shot learning for 

full ceramic bearing fault diagnosis. By using the pre-

trained GPT2 deep structure, we can effectively transfer 

knowledge from a large corpus of unlabeled data to a small 

labeled dataset and improve the model's generalization 

ability. 

There are a number of key factors attributed to the use of  

GPT2, and later models like GPT3 or ChatGPT in our 

method: (1) Model scale:  GPT2 and its successors are built 

on an extremely large scale in terms of both model size 

(number of parameters) and amount of training data. This 

allows them to learn a broad representation of language. For 

instance, GPT-2 has 1.5 billion parameters, while GPT-3 

has a staggering 175 billion. (2) Unsupervised learning: 

These models are trained using unsupervised learning on a 

large corpus of internet text. This means they are not 

specifically trained to answer questions or generate text in a 

specific style; rather, they learn to predict the next word in a 

sentence. It's through this task that they acquire an 

understanding of syntax, semantics, and some factual 

information.  (3) Transfer learning: The GPT model can be 

considered an example of transfer learning. The model is 

initially trained on a broad task (predicting the next word in 

internet text), and this trained model is then fine-tuned on a 

more specific task. This allows the model to apply the broad 

understanding of language it gained during pretraining to 

the specific task during fine-tuning. (4) Transformer 

architecture: The underlying architecture of GPT2 is a 

transformer model, which uses self-attention mechanisms to 

understand the context of words in a sentence. This allows it 

to generate more coherent and contextually appropriate text 

compared to older architectures like RNNs or LSTMs. 

3. THE METHODOLOGY 

The proposed few-shot learning for full ceramic bearing 

fault diagnosis framework is shown Figure 2.  As shown in 

Figure 2, the collected AE signals are first processed using 

empirical mode decomposition (EMD) method into multiple 

intrinsic mode components (IMFs) which are used to 

generate the AE features (He et al. 2001).  These AE 

features are then used to fine-tune the pre-trained GPT2 

model as a classifier by K-way N-shot learning.  Once the 

classifier is trained, it will be applied to incoming AE 

features with unknown faults to identify the bearing faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The framework of the proposed methodology 

 

Figure 3 shows the details of the fine-tuning with K-way N-

shot samples. 

To achieve better transfer learning performance for fine-

tuning the pre-trained deep structure, two effective 

approaches have been suggested in the literature (Dhillon et 

al. 2020, Chen et al. 2020, Chen et al. 2019).  One is to 

modify the loss function of the fine-tuning by adding a 

regularization.  Another one is to modify the softmax 

activation function of the classify layer using cosine 

similarity.   
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Let  

    𝑦𝑖𝑗 = the true label for class 𝑗 of sample 𝑖. 

    𝑝𝑖𝑗  = the predicted probability class 𝑗 of sample 𝑖. 

    𝑁  = the total number of samples. 

Then we can compute the mean cross-entropy loss over all 

samples (𝑁) as: 

 𝐿𝑚𝑒𝑎𝑛= -(1/𝑁) ∗ ∑∑ 𝑦𝑖𝑗* 𝑙𝑜𝑔(𝑝𝑖𝑗)                         (1) 

Since sample size in few-shot learning is small, the fine-

tuning of the pre-trained model could lead to overfitting 

problems.  To prevent overfitting during fine-tuning, it is 

suggested that an entropy regularization should be added to 

the cross-entropy function.  Let 𝐩 be the probability 

distribution as the output of the softmax function in the 

classification layer.  Then the entropy of 𝐩 can be computed 

as: 

℮( 𝐩) = ∑∑ 𝑝𝑖𝑗  ∗ 𝑙𝑜𝑔(𝑝𝑖𝑗)                                     (2) 

The entropy regularization is defined as the average of 

℮( 𝐩) as:  
∑ ℮( 𝐩)

𝑁
.  Therefore, modified loss function with 

the entropy regularization can be computed as: 

   𝐿𝑚𝑒𝑎𝑛
′ = −(1/𝑁)  ∗  ∑∑ 𝑦𝑖𝑗 ∗  𝑙𝑜𝑔(𝑝𝑖𝑗) − (1/𝑁) ∗

 ∑ ∑∑ 𝑝𝑖𝑗  ∗ 𝑙𝑜𝑔(𝑝𝑖𝑗)        (3)                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  The fine-tuning of GPT2 model 

To modify the softmax activation function, define: 

x = the test samples 

𝐖 = weight vector from the classification layer 

𝐛 = the bias 

The softmax activation function can be modified with the 

cosine similarity as: 

𝐩 = Softmax(
𝐖𝑇𝐱

‖𝐖‖2‖𝐱‖2
+ 𝐛)                                       (4) 

4. EXPERIMENT SETUP AND RESULTS 

4.1. The Dataset 

To evaluate the performance of the proposed methodology 

for full ceramic bearing fault diagnosis, AE signal dataset 

collected during bearing seeded fault tests performed on a 

bearing test rig in the laboratory are used.  Figure 4 shows 

the bearing test rig and the AE sensors on the bearing 

housing. 

 

 

 

 

 

 

Figure 4.  Bearing test rig (left) and AE sensors (right) 

Two wide band (WD) type AE sensors and a 2-channel data 

acquisition card with 18-bit resolution and a maximum 

sampling rate up to 40 MHz were used to collect the AE 

burst data.  The AE sensors were attached to the bearing 

housing by instant glues.   

During the test, bearings with following seeded faults were 

run on the test rig to collect the AE signals: inner race fault, 

outer race fault, ball fault, and cage fault (see Figure 5). The 

speed of the motor shaft was controlled at 10Hz (600 rpm) 

and the AE signals were collected at a sampling rate of 5 

MHz. 
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Figure 5.  Bearing seeded faults 

For each collected AE signal, the EMD method was applied 

to decompose it into a number of IMF components.  An 

example of the bearing inner race fault AE signal and the 

first 4 IMF components of the signal are provided in Figure 

6. 

 

 

 

 

 

(a) AE signal of inner race fault 

 

 

 

 

 

 

 

 

(b) The first 4 IMF components of the signal in (a) 

Figure 6.  An example of the bearing inner race fault AE 

signal and its IMF components 

To extract the AE features, the three IMF components were 

summed and then the following three values were extracted 

from the summed IMF components: rms, peak value, and 

kurtosis.  From these values, 7 AE features were formed as 

shown in Table 1. 

  Table 1.  The extracted AE features 

AE feature Explanation 

rms-average Average of the root mean 

squared values 

rms-stdev Standard deviation of the 

root mean squared values 

rms-

average+rms-

stdev 

Sum of rms-average and 

rms-stdev 

kurtosis-

average 

Average of the kurtosis 

values 

kurtosis-stdev Standard deviation of the 

kurtosis values 

peak-average Average of the peak values 

peak-stdev Standard deviation of the 

peak values 

 

For each type of bearing faults, a total of 40 data points 

were generated.  Therefore, a total of 160 data points were 

available for the data analysis. 

4.2. The Analysis Results 

To fine-tune the pre-trained GPT2 model, K-way N-shot 

samples were randomly generated without replacement form 

the dataset of 160 samples.  Then remaining samples were 

split with an 80-20 ratio.  20% of the remaining samples 

were used as the validation set for the K-way N-shot 

learning. 

Since GPT2 is developed for text learning only.  In order to 

use the pre-trained GPT2 for fault classification, the AE 

feature data were first converted into text using text 

normalization.  Text normalization is the process of 

converting numbers, symbols, and other non-textual data 

into their corresponding textual representations.  For 

example, for a numerical value like "98.6", it can be 

converted to "ninety-eight point six" using a text 

normalization technique. 

For the fine-tuning of the GPT2, the following parameters 

were set up as shown in Table 2. 

 

 

 

 

 

inner race fault outer race fault 

ball fault cage fault 
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Table 2.  Parameter settings of the fine-tuning 

Name Value 

Fully connected 

classification layer 

Number of neurons = 768 

Optimizer AdamW: beta1=0.9, beta2=0.999, 

epsilon = 1e-8 

Learning rate 3e-5 

 

Since there were 4 types of faults in the dataset, K = 4.  5 

different 4-Way N-shot learnings for N = 1, …, 5 were 

performed.  The results are present in Tables 3-6.   

 

Table 3. 4-Way 1-Shot learning results 

Old loss +softmax New loss+softmax  

Val 

accuracy 

(%) 

Train 

accuracy  

(%) 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

23.13 25.00 53.34 57.5 

  

Table 4. 4-Way 2-Shot learning results 

Old loss+softmax New loss+softmax 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

28.39 35.00 62.10 67.5 

 

Table 5. 4-Way 3-Shot learning results 

Old loss+softmax New loss+softmax 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

33.33 45.00 74.33 75.17 

 

 

 

 

Table 6. 4-Way 4-Shot learning results 

Old loss+softmax New loss+softmax 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

36.59 53.00 83.13 83.50 

 

Table 5. 4-Way 5-Shot learning results 

Old loss+softmax New loss+softmax 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

Val 

accuracy 

(%) 

Train 

accuracy 

(%) 

42.29 61.89 92.34 92.71 

 

From the results presented in Tables 3-6, we can see that 

modifying the loss function with entropy regularization and 

softmax function with cosine similarity improves the few-

shot learning for full ceramic bearing fault diagnosis 

significantly.  As we increase the number of shots, the 

diagnostic accuracy increases.     

5. CONCLUSION 

In this paper, a few-shot learning approach for full ceramic 

bearing fault diagnosis with AE signals was presented. 

Specifically, we used the pre-trained deep NLP structure 

GPT2 to train a fault classifier with extracted AE features 

on a small number of labeled examples.  The fine-tuning of 

the GPT2 model was involved with a modified loss function 

and a modified softmax activation function.  4-way N-shot 

learning was performed on a set of full ceramic bearing 

seeded fault data collected from a bearing test rig in the 

laboratory.  The evaluation results have shown that the 

presented method was able to diagnose the bearing faults 

with satisfied accuracies. 
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