Deep Neural Network Anomaly Detection and Statistical Estimation of High Pressure Liquefied Natural Gas Pipe
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Anomaly detection method using neural network is performed for diagnosis. Liquefied natural gas pipeline is designed using finite element method. To consider abnormal condition, a damage was applied to the model. Then failure mode and effect analysis are performed to determine if the location of damage is acceptable. The designed system was validated through literatures and showed that the model is suitable to replace the actual model. Data collection was done by changing each design variables in certain range from the designed model. Designable generative adversarial network was used for data augmentation and anomaly detection with adversarial network was used for anomaly detection. The performance of anomaly detection of the proposed model showed 95% of accuracy before data augmentation and 99% of accuracy after data augmentation. The result provides statistical estimation of diagnosis range for each design variables, which clearly showed the difference of performing data augmentation. By diagnosis result, the variables are used back to the designed model for validation of the result and showed accuracy of 85%.