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ABSTRACT 

Anomaly detection method using neural network is 

performed for diagnosis. Liquefied natural gas pipeline is 

designed using finite element method. To consider 

abnormal condition, a damage was applied to the model. 

Then failure mode and effect analysis are performed to 

determine if the location of damage is acceptable. The 

designed system was validated through literatures and 

showed that the model is suitable to replace the actual 

model. Data collection was done by changing each design 

variables in certain range from the designed model. 

Designable generative adversarial network was used for 

data augmentation and anomaly detection with adversarial 

network was used for anomaly detection. The performance 

of anomaly detection of the proposed model showed 95% 

of accuracy before data augmentation and 99% of accuracy 

after data augmentation. The result provides statistical 

estimation of diagnosis range for each design variables, 

which clearly showed the difference of performing data 

augmentation. By diagnosis result, the variables are used 

back to the designed model for validation of the result and 

showed accuracy of 85%. 

 

1. INTRODUCTION 

Demand of liquefied natural gas (LNG) with low carbon 

dioxide emission is increasing. The amount of supply must 

be increased accordingly, but high flow rate and pressure 

of the natural gas can damage the pipelines carrying LNG. 

Pipeline maintenance must be performed since even a 

small damage can cause fatal effects. Currently in actual 

field, in-line pigging method is used which is a post-

maintenance technique and the gas supply is stopped for 

applying this method. By development of artificial 

intelligence, Aljameel, Alomari, Alismail, and Khawaher 

(2022) performed anomaly detection of pipelines based on 

machine learning technique, but there are limitations of 

clear identification of the anomalies in the system.  

The procedure for this study is shown in Figure 1. 

Simulation model is constructed by finite element method 

(FEM), and the result of the analysis is compared and 

validated through literature. Then failure mode and effect 

analysis (FMEA) of actual pipeline is considered and 

analyzed. By comparing FEM results and FMEA, the 

validity of the simulation model was performed. For 

accurate diagnosis and anomaly detection of the pipe, deep 

neural network was applied for the data augmented and 

anomaly detection. The contributions of this study are as 

follows:  

1. Applicability of the simulation model was validated 

through literature to find main anomality in pipe. 

2. Anomaly detection was performed, and the result 

showed the suitability of the diagnostic results. 

 

 

Figure 1. Flowchart of the process. 
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2. FINITE ELEMENT METHOD 

ANSYS software was used for FEM of high pressure 

liquefied natural gas pipe. API 5L Gr.X65 material 

property was applied for the model. Total length of 

4600mm with diameter of 762mm main pipe was designed 

as T-shaped as Figure 2a). Also, 200mm length branch pipe 

with diameter of 66mm are welded with fittings to the main 

pipe for supply and detailed view of the branched pipe is 

shown in Figure 2b). The parameters of the pipe and fluid 

characteristics are adopted from real work scenarios to 

consider actual working conditions. The gas enters the pipe 

through the inlet and is discharged through two different 

outlets. FEM was done in the process of flow, structural, 

vibration and fatigue analysis to determine the behavior 

and tendency of the pipe due to high pressurized LNG flow. 

 

Figure 2a). Pipe model. 

 

Figure 2b). Branched pipe. 

2.1. Flow Analysis 

For quick supply of the gas, high flow rate of 20 m/s was 

applied. k-ε turbulence model was applied for analysis due 

to high Reynolds number of 8.52 × 107. By analysis, 

turbulence flow was found around the branch pipe, where 

literature research was focused to define this tendency. 

Sierra, Bates, and Doherty (2000) found that the formation 

of vortex shape in the branched pipe due to turbulent 

kinetic energy of the main pipe. Jo, Kim, Jo, and Hwang 

(2015) also determined that the maximum pressure occurs 

inside the branch pipe, close to the vortex.  

 

Figure 3. Flow around branched pipe. 

2.2. Structural Analysis  

Stress concentration due to flow pressure was considered 

at this stage. It was determined that the maximum stress 

occurs at the welds of the branch pipe. Among the welds, 

maximum stress was occurring at the connection between 

the main pipe and the branch pipe. Figure 4 shows three 

points, where point A and C corresponds to clutch and 

point B as saddle. For the inner surface of the weld, clutch 

points had the lowest stress and in contrast, the saddle point 

had the highest stress. The stress at the saddle was the 

location of stress concentration happening throughout the 

whole pipe system. Shin, Yoon, and Kim (2006) 

determined the stress distribution of T-shaped branch pipe 

and deriving the same result and distributions.  

 

Figure 4. Top view of the pipe. 

2.3. Vibration Analysis  

Mode analysis and harmonic analysis was performed to 

analyze dynamic characteristics of the pipe. By structural 

analysis, stress concentration occurs in the weld connecting 

the main pipe and the branch pipe. Based on this result, 

damage applied to this weld is considered to cause most 

critical failure to the system. Sine wave and natural 

frequency was derived and stress occurring by fluid 

induced vibration was determined. 

2.4. Fatigue Analysis  

Based on stress-strain curve of the material and derived 

vibration signal, fatigue analysis was applied for fatigue 

failure determination. Without small crack on the system, 

no fatigue failure occurs. However, when there is a small 

crack applied, the pipe fails after 3.3 years of operation. 

The analysis result as Figure 5. shows the stress occurred 

from the crack propagates to the outer surface of the weld, 

which affects the fatigue life of the pipe. By applying 
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damage to the system, the maximum stress and vibration 

signal from previous steps increased, which caused the 

fatigue life to decrease. 

 

Figure 5. Stress propagation from crack. 

3. FAILURE MODE AND EFFECT ANALYSIS 

Failure mode and effect analysis was established by 

literature analysis. The main consideration of the 

establishment was the pipeline components on the system, 

where non-designed parts from simulation was omitted. 

From various of literatures Jeong, Park, Koo, Kim, Yoo, 

and Jo (2018), Animah & Shafiee (2020), and Yuhui, Shiyu, 

Lijing, and Tao (2013) pointed out that pipe leakage is 

found to be the most critical mode, and the cause of failure 

is by welding defect or internal/external corrosion. FMEA 

from literatures shows that the maintenance of the weld is 

important, where FEM result also showed the stress 

concentration occurrence in the weld connecting main and 

the branch pipe. For damage prevention, scrutiny needs to 

be done around the region with high probability of failure. 

The result of stress concentration at the weld of the pipe 

shows that the simulation process is suitable to replace the 

actual pipe.  

4. ANOMALY DETECTION 

By performing sensitivity analysis, five relevant design 

variables most related to stress were selected. For 

sensitivity analysis, Pearson correlation coefficient was 

applied. Damage of crack is considered as abnormality and 

83 data is collected by changing design variables. 69 data 

from the dataset is considered as normal data since the 

maximum stress does not excess the construction threshold. 

Yoo, Jung, Han, and Lee (2021) performed designable 

generative adversarial network (DGAN) which augments 

data and determines the variable information of the 

augmented dataset. DGAN was applied for the pipe dataset 

and total 498 data are collected by augmentation. Widely 

used classification method of support vector machine 

(SVM) showed low accuracy of 79% and 82% before and 

after data augmentation, respectively. To improve the 

accuracy of the model, the input data type and overall 

structure of the model was considered. As a solution, 

anomaly detection method, of neural network-based 

method is performed. The used method is based on 

unsupervised anomaly detection, where the discriminator 

of the model is only trained with normal data. Table 1 

shows the minimum and maximum value of the variable 

for initial 83 data. The accuracy of anomaly detection of 

the model was 95% before augmentation. F1 score before 

data augmentation was 0.857, with recall score of 0.75 and 

precision score of 1. Table 2 shows the statistical 

estimation of the design variables by 95% confidence 

interval range of the detected result. Before augmentation, 

the average value of healthy range and faulty range is 

similar and the range of 95% confidence interval is also 

similar with each other. Anomaly detection accuracy after 

data augmentation was 99% and the variable range is 

shown at Table 3. Additionally, the F1 score after data 

augmentation was 0.960, where recall score of 0.923 and 

precision score of 1. The result shows that the healthy and 

faulty range for variables x1, x3, x5 is separated from each 

other, where variables x2 and x4 did not clearly converge.  

Table 1. Initial variable range 

Variable Minimum [mm] Maximum [mm] 

x1 48.285 59.015 

x2 2.7 3.3 

x3 1.44 1.76 

x4 28.8 35.2 

x5 33.75 41.25 

 

Random values of variables are selected from healthy 

range. For variables x2 and x4 which does not have clear 

differences, the average value which has high probability 

density function of the distribution was selected. The 

variable values are applied back to simulation for 

validation. Weighted integrated factor (WIFac) was used 

and the comparison of the result of validation is shown in 

Figure 6. In Figure 6, the simulation data is plotted as blue 

line and the generated data from DGAN is shown in black 

dashed line. Main importance in this plot is that the peak 

values of the augmented data and actual simulation data is 

like each other, and the result is acceptable. 

 

Figure 6. WIFac validation (WIFac = 0.85714) 

 



 

Table 2.95% confidence interval before augmentation. 

Variable 
Healthy Faulty 

Average Range Average Range 

x1 53.4167 [44.3204 62.5130] 54.0332 [43.3327 64.7337] 

x2 3.0348 [2.5356 3.5340] 2.8071 [2.3602 3.2541] 

x3 1.6 [1.3256 1.8744] 1.5657 [1.2801 1.8513] 

x4 31.496 [26.4118 0.5712] 32.6857 [26.9732 38.3982] 

x5 37.3913 [30.9638 43.8188] 38.8393 [32.5251 45.1535] 

 

Table 3. 95% confidence interval after augmentation. 

Variable 
Healthy Faulty 

Average Range Average Range 

x1 50.462 [49.9705 55.9584] 58.80595 [53.8322 63.7797] 

x2 2.9202 [2.6563 3.1841] 2.925855 [2.7390 3.1128] 

x3 1.5941 [1.5034 1.6847] 1.43858 [1.28 1.5972] 

x4 30.4140 [28.42 32.4079] 31.98105 [29.9073 34.0548] 

x5 36.5214 [33.9113 39.1314] 29.33085 [22.1333 36.5284] 

5. CONCLUSION 

High pressure liquefied natural gas pipeline has designed by 

FEM and validated. The existence of damage in the weld 

connecting the branch pipe and main pipe was analyzed as 

the location where stress concentration occurs. It was able to 

analyze that the designed model was used to replace the 

actual model. By applying neural network, it was able to 

achieve variable information and perform high accuracy of 

anomaly detection. The result provides statistical estimation 

of the design variables which enables to perform diagnosis of 

the designed model. In future study, considering more failure 

modes or components will enable to perform more precise 

diagnosis in high pressure LNG pipeline. 
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