Assessing the Sustainability Impacts of Industry 4.0 on Maintenance Policies A Systematic Literature Review and Future Research Directions
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Maintenance strategies have traditionally been designed with a primary focus on cost reduction and operational efficiency, often overlooking their broader environmental and social impacts. However, in the current context where industries must align with European carbon neutrality 2050 objectives and the United Nations Sustainable Development Goals (SDGs), maintenance is recognized as a key lever for enhancing the three pillars of sustainability in industries: economic, social, and environmental. In addition, recent studies have shown that the ongoing digital transformation of industry through Industry 4.0 technologies such as artificial intelligence, Internet of Things, digital twins, and big data analytics, offers new opportunities to improve maintenance strategies. These developments have given rise to the concept of Maintenance 4.0, which opens new perspectives for aligning maintenance practices with broader sustainability objectives.
To better understand the impact of these technologies on maintenance sustainability, as well as the existing assessment initiatives in the current state of research, this paper conducts a systematic literature review (SLR). A total of 31 relevant studies were analyzed and classified into literature reviews, conceptual frameworks, and evaluation models. The review reveals that while economic and environmental benefits are increasingly supported by measurable indicators, the social dimension remains underexplored and lacks standardized metrics. In addition, most studies focus on short-term operational gains and do not address life cycle-wide perspective, including manufacturing and end-of-life stages.
Based on these findings, this paper (i) clarifies the current maturity of research and its exploratory nature; (ii) identifies major gaps which is the lack of lifecycle-based assessments and operational social indicators; (iii) highlights the weak operationalization of circular economy principles in maintenance 4.0 strategies; and (iv) proposes future research directions to develop holistic, life cycle-oriented, human-centric, and practically validated frameworks. These contributions aim to support the transition toward more sustainable maintenance practices, in alignment with sustainability goals.
##plugins.themes.bootstrap3.article.details##
Industry 4.0, Maintenance, Sustainability, Life Cycle Assessment, Carbon Neutrality, Economic-Social-Environmental
Almeida, J., Ribeiro, B., & Cardoso, A. (2023). A human-centric approach to aid in assessing maintenance from the sustainable manufacturing perspective. In (Vol. 220, pp. 600–607). doi: 10.1016/j.procs.2023.03.076
Arredondo-Méndez, V. H., Para-González, L., Mascaraque-Ramírez, C., & Domínguez, M. (2021, September). The 4.0 Industry Technologies and Their Impact in the Continuous Improvement and the Organizational Results: An Empirical Approach. Sustainability, 13(17), 9965. doi: 10.3390/su13179965
Awan, U., & Sroufe, R. (2022). Sustainability in the Circular Economy: Insights and Dynamics of Designing Circular Business Models. Applied Sciences, 12(3), 1521. doi: 10.3390/app12031521
Bocken, N. M. P., De Pauw, I., Bakker, C., & Van Der Grinten, B. (2016, July). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 308–320. doi: 10.1080/21681015.2016.1172124
Bredebach, C. (2023). Is sustainable maintenance a support or standalone function? a definition.. (4th Conference on Production Systems and Logistics) doi: 10.15488/13421
Chabane, B., Komljenovic, D., & Abdul-Nour, G. (2023). Converging on human-centred industry, resilient processes, and sustainable outcomes in asset management frameworks. Environment Systems and Decisions, 43(4), 663–679. (Publisher: Springer) doi: 10.1007/s10669-023-09943-w
Culot, G., Nassimbeni, G., Orzes, G., & Sartor, M. (2020). Behind the definition of Industry 4.0: Analysis and open questions. International Journal of Production Economics, 226, 107617. doi: 10.1016/j.ijpe.2020.107617
Cınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability, 12(19), 8211. doi: 10.3390/su12198211
Danjou, C., Rivest, L., & Pellerin, R. (2017). Douze positionnements stratégiques pour l’Industrie 4.0 : entre processus, produit et service, de la surveillance `a l’autonomie..
Diop, M. M., Durupt, A. P., Danjou, C., Baouch, Y., & Boudaoud, N. (2025). A roadmap to integrate the sustainable impact of industry 4.0 technologies in maintenance policies. In 35th european safety and reliability conference (esrel2025)/33rd society for risk analysis europe conference (sra-e 2025) (pp. 1610–1617). doi: 10.3850/978-981-94-3281-3 esrel-srae2025-p0757-cd
Drath, R., & Horch, A. (2014, June). Industrie 4.0: Hit or Hype? [Industry Forum]. IEEE Industrial Electronics Magazine, 8(2). doi: 10.1109/MIE.2014.2312079
El Kihel, Y., El Kihel, A., & Bouyahrouzi, E. M. (2022). Contribution of Maintenance 4.0 in Sustainable Development with an Industrial Case Study. Sustainability, 14(17), 11090. doi: 10.3390/su141711090
EN 15341: Maintenance - Key Performance Indicators. (2019). (European Committee for Standardization (CEN))
Enyoghasi, C., & Badurdeen, F. (2021). Industry 4.0 for sustainable manufacturing: Opportunities at the product, process, and system levels. Resources, Conservation and Recycling, 166, 105362. doi: 10.1016/j.resconrec.2020.105362
Fallahiarezoudar, E., Ahmadipourroudposht, M., Bagherian Rafi, M., & Ngadiman, N. (2025). A Systematic Approach of Maintenance 4.0 Towards a Sustainable Manufacturing Policy: A Case Study on an Automobile Company. Process Integration and Optimization for Sustainability. doi: 10.1007/s41660-025-00505-y
Farsi, M., Mishra, R. K., & Erkoyuncu, J. A. (2021). Industry 5.0 for Sustainable Reliability Centered Maintenance. SSRN Electronic Journal. doi: 10.2139/ssrn.3944533
Fetting, C. (2020). The european green deal (Tech. Rep.). European Sustainable Development Network, ESDN Office, Vienna.
Firat Unal, A., Albayrak, O., & Unal, P. (2023). Impact of Digital Twin Technology Utilization in Manufacturing on Sustainability: An Industrial Case Study.. doi: 10.23919/PICMET59654.2023.10216885
Folgado, C., Calderón, D., González, I., & Calderón, A. (2024). Review of Industry 4.0 from the Perspective of Automation and Supervision Systems: Definitions, Architectures and Recent Trends. Electronics, 13(4), 782. doi: 10.3390/electronics13040782
Franciosi, C., Iung, B., Miranda, S., & Riemma, S. (2018). Maintenance for Sustainability in the Industry 4.0 context: a Scoping Literature Review. In (Vol. 51, pp. 903–908). (Issue: 11) doi: 10.1016/j.ifacol.2018.08.459
Franciosi, C., Roda, I., Voisin, A., Miranda, S., Macchi, M., & Iung, B. (2021). Sustainable maintenance performances and en 15341:2019: An integration proposal. In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (Vol. 633, pp. 401–409). Springer International Publishing. (Series Title: IFIP Advances in Information and Communication Technology) doi: 10.1007/978-3-030-85910-7 42
Franciosi, C., Voisin, A., Miranda, S., & Iung, B. (2020). Integration of I4.0 technologies with maintenance processes: What are the effects on sustainable manufacturing? In (Vol. 53, pp. 1–6). (Issue: 3) doi: 10.1016/j.ifacol.2020.11.001
Franciosi, C., Voisin, A., Miranda, S., Riemma, S., & Iung, B. (2020). Measuring maintenance impacts on sustainability of manufacturing industries: from a systematic literature review to a framework proposal. Journal of Cleaner Production, 260, 121065. doi: 10.1016/j.jclepro.2020.121065
Jasiulewicz-Kaczmarek, M. (2013). Sustainability: Orientation in Maintenance Management—Theoretical Background. In P. Golinska (Ed.), EcoProduction and Logistics (pp. 117–134). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-23553-5_8
Jasiulewicz-Kaczmarek, M. (2024). Maintenance 4.0 Technologies for Sustainable Manufacturing. Applied Sciences, 14(16), 7360. doi: 10.3390/app14167360
Jasiulewicz Kaczmarek, M., & Gola, A. (2019). Maintenance 4.0 Technologies for Sustainable Manufacturing - an Overview. IFAC-PapersOnLine, 52(10), 91–96. doi: 10.1016/j.ifacol.2019.10.005
Jasiulewicz-Kaczmarek, M., Legutko, S., & Kluk, P. (2020). Maintenance 4.0 technologies – new opportunities for sustainability driven maintenance. Management and Production Engineering Review. doi: 10.24425/mper.2020.133730
Jena, M., Mishra, S., & Moharana, H. (2024). Integration of Industry 4.0 with reliability centered maintenance to enhance sustainable manufacturing. Environmental Progress and Sustainable Energy, 43(2). (Publisher: John Wiley and Sons Inc) doi: 10.1002/ep.14321
Khan, M., Yasmeen, T., Khan, M., Hadi, N., Asif, M., Farooq, M., & Al-Ghamdi, S. (2025). Integrating industry 4.0 for enhanced sustainability: Pathways and prospects. Sustainable Production and Consumption, 54, 149–189. doi: 10.1016/j.spc.2024.12.012
Lerat, J.-S., & Mahmoudi, S.-A. (2024). Scalable Deep Learning for Industry 4.0: Speedup with Distributed Deep Learning and Environmental Sustainability Considerations. In (Vol. 1220 LNNS, pp. 182–204). doi: 10.1007/978-3-031-78698-3 10
Lieder, M., & Rashid, A. (2016). Towards circular economy implementation: a comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115, 36–51. doi: 10.1016/j.jclepro.2015.12.042
Ma, S., Ding, W., Liu, Y., Zhang, Y., Ren, S., Kong, X., & Leng, J. (2024). Industry 4.0 and cleaner production: A comprehensive review of sustainable and intelligent manufacturing for energy-intensive manufacturing industries. Journal of Cleaner Production, 467. doi: 10.1016/j.jclepro.2024.142879
Madreiter, T., Trajanoski, B., Martinetti, A., & Ansari, F. (2024). Sustainable Maintenance: What are the key technology drivers for ensuring Positive Impacts of Manufacturing Industries? In (Vol. 58, pp. 616–621). (Issue: 19) doi: 10.1016/j.ifacol.2024.09.232
Martinelli, M., Lopes, S., & Migliardi, M. (2024). Predictive Technologies and Methodologies for Human Operator Assessment in Industry 5.0: A Conceptual Framework. doi: 10.1109/ETFA61755.2024.10710870
Monostori, L., Kadar, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., . . . Ueda, K. (2016). Cyberphysical systems in manufacturing. CIRP Annals, 65(2), 621–641. doi: 10.1016/j.cirp.2016.06.005
Munsamy, M., & Telukdarie, A. (2018). Application of Industry 4.0 towards Achieving Business Sustainability. In IEEE Int. Conf. Ind. Eng. Eng. Manage. (Vol. 2019-December, pp. 844–848). IEEE Computer Society. (Journal Abbreviation: IEEE Int. Conf. Ind. Eng. Eng. Manage.) doi: 10.1109/IEEM.2018.8607566
Narkhede, G., Mahajan, S., Narkhede, R., & Chaudhari, T. (2024). Significance of Industry 4.0 technologies in major work functions of manufacturing for sustainable development of small and medium-sized enterprises. BUSINESS STRATEGY AND DEVELOPMENT, 7(1). doi: 10.1002/bsd2.325
Nedungadi, P., Surendran, S., Tang, K., & Raman, R. (2024). Big Data and AI Algorithms for Sustainable Development Goals: A Topic Modeling Analysis. IEEE ACCESS, 12, 188519–188541. doi: 10.1109/ACCESS. 2024.3516500
Onu, P., Pradhan, A., & Mbohwa, C. (2023). Industry 4.0 and Beyond: Enabling Digital Transformation and Sustainable Growth in Industry X.0. In IEEE Int. Conf. Ind. Eng. Eng. Manag., IEEM (pp. 758–762). Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/IEEM58616.2023.10406334
Ooi, L., Teh, S., & Cheang, P. (2023). The impact of lean production on sustainable organizational performance: the moderating effect of industry 4.0 technologies adoption. Management Research Review, 46(12), 1802–1836. doi: 10.1108/MRR-06-2022-0448
Orosnjak, M., Jocanovic, M., C avic, M., Karanovic, V., & Pencíc, M. (2021). Industrial maintenance 4(.0) Horizon Europe: Consequences of the Iron Curtain and Energy-Based Maintenance. Journal of Cleaner Production, 314. doi: 10.1016/j.jclepro.2021.128034
Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., . . . McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, n160. doi: 10.1136/bmj.n160
Patalas-Maliszewska, J., & Losyk, H. (2022). An approach to maintenance sustainability level assessment integrated with Industry 4.0 technologies using Fuzzy-TOPSIS: A real case study. ADVANCES IN PRODUCTION ENGINEERING & MANAGEMENT, 17(4), 455–468. doi: 10.14743/apem2022.4.448
Rupp, M., Schneckenburger, M., Merkel, M., Börret, R., & Harrison, D. K. (2021). Industry 4.0: A Technological-Oriented Definition Based on Bibliometric Analysis and Literature Review. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 68. doi: 10.3390/joitmc7010068
Samadhiya, A., Agrawal, R., Luthra, S., Kumar, A., Garza-Reyes, J., & Srivastava, D. (2023). Total productive maintenance and Industry 4.0 in a sustainability context: exploring the mediating effect of circular economy. INTERNATIONAL JOURNAL OF LOGISTICS MANAGEMENT, 34(3), 818–846. doi: 10.1108/IJLM-04-2022-0192
Saraswat, P., & Agrawal, R. (2023). Artificial Intelligence as Key Enabler for Sustainable Maintenance in the Manufacturing Industry: Scope & Challenges. Evergreen, 10(4), 2490–2497. doi: 10.5109/7162012
Soori, M., Arezoo, B., & Dastres, R. (2023). Internet of things for smart factories in industry 4.0, a review. Internet of Things and Cyber-Physical Systems, 3, 192–204. doi: 10.1016/j.iotcps.2023.04.006
Senechal, O., & Trentesaux, D. (2019). A framework to help decision makers to be environmentally aware during the maintenance of cyber physical systems. ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 77, 11–22. doi: 10.1016/j.eiar.2019.02.007
Turner, C., Okorie, O., Emmanouilidis, C., & Oyekan, J. (2022). Circular production and maintenance of automotive parts: An Internet of Things (IoT) data framework and practice review. Computers in Industry, 136. doi: 10.1016/j.compind.2021.103593
Vasíc, S., Orosnjak, M., Brkljac, N., Vrhovac, V., & Ristíc, K. (2024). Identification of Criteria for Enabling the Adoption of Sustainable Maintenance Practice: An Umbrella Review. Sustainability, 16(2), 767. doi: 10.3390/su16020767
Vela Almeida, D., Kolinjivadi, V., Ferrando, T., Roy, B., Herrera, H., Vecchione Gonc¸alves, M., & Van Hecken, G. (2023). The “Greening” of Empire: The European Green Deal as the EU first agenda. Political Geography, 105, 102925. doi: 10.1016/j.polgeo.2023.102925
Vrignat, P., Kratz, F., & Avila, M. (2022). Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review. Reliability Engineering and System Safety, 218. doi: 10.1016/j.ress.2021.108140
Waghanna, P., Reddy, A., Deshpande, S., Chavan, S., Jaiswal, V., & Naranje, V. (2024). Effects of Adopting Industry 4.0 on a Manufacturing Plant.. doi: 10.1109/ICRITO61523.2024.10522189
Wakiru, J., Pintelon, L., Muchiri, P. N., & Chemweno, P. K. (2021). Integrated remanufacturing, maintenance and spares policies towards life extension of a multicomponent system. Reliability Engineering & System Safety, 215, 107872. doi: 10.1016/j.ress.2021.107872
Wang, Y., Wang, S., Yang, B., Zhu, L., & Liu, F. (2020). Big data driven hierarchical digital twin predictive remanufacturing paradigm: Architecture, control mechanism, application scenario and benefits. Journal of Cleaner Production, 248, 119299. doi: https://doi.org/10.1016/j.jclepro.2019.119299
Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530–535. doi: 10.1016/j.jmsy.2021.10.006
Zhao, J., Gao, C., & Tang, T. (2022). A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment. Sustainability, 14(5), 2992. doi: 10.3390/su14052992