Life Cycle Assessment of Aircraft Maintenance Environmental Implications of Battery Electric Propulsion Systems

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 11, 2025
Antonia Rahn Jan-Alexander Wolf Ricardo Dauer Robert Meissner Ahmad Ali Pohya Gerko Wende

Abstract

The electrification of aircraft propulsion systems is currently being intensively investigated to reduce climate-damaging emissions during flight operations. Battery Electric Propulsion Systems (EPSs) are highly complex and require regular maintenance to ensure airworthiness. In particular, the limited lifespan of batteries necessitates frequent replacements, which can lead to significant environmental impact. This paper discusses possible maintenance activities for battery EPSs and their environmental implications. The environmental assessment is based on a Life Cycle Assessment (LCA), which considers the impact of individual maintenance tasks over the entire aircraft life cycle. The LCA results show that the environmental impact of maintenance increases significantly with the use of the electrical system compared to conventional propulsion systems. Two different battery scenarios with state-of-the-art and projected energy densities towards the year 2035 show significant potential for improvement. In our analysis, the batteries, which have to be replaced a total of eight times during the evaluated life cycle, account for the largest contribution to the environmental impact. At the same time, battery EPSs offer the potential to significantly reduce the environmental impact of flight operations, as there are no direct emissions into the atmosphere. The results highlight the need to consider maintenance-related environmental impact alongside operational improvements, providing a foundation for future strategies that minimise the impact while ensuring operational safety and efficiency. Nevertheless, implementing these systems presents significant challenges from a maintenance perspective, particularly in avoiding environmental burden shifting.

Abstract 6 | PDF Downloads 2

##plugins.themes.bootstrap3.article.details##

Keywords

life cycle assessment, aircraft maintenance, electric propulsion system, battery replacement

References
Abramushkina, E., Zhaksylyk, A., Geury, T., El Baghdadi, M., & Hegazy, O. (2021). A Thorough Review of Cooling Concepts and Thermal Management Techniques for AutomotiveWBGInverters: Topology, Technology and Integration Level. Energies, 14(16). doi: 10.3390/en14164981
Afonso, F., Sohst, M., Diogo, C. M., Rodrigues, S. S., Ferreira, A., Ribeiro, I., . . . Suleman, A. (2023). Strategies Towards a More Sustainable Aviation: A Systematic Review. Progress in Aerospace Sciences, 137. doi: 10.1016/j.paerosci.2022.100878
Airbus. (2020). A320 Aircraft Characteristics: Airport and Maintenance Planning: Revision 39.
Aircraft Commerce. (2007). ATR 42 & 72 Maintenance Analysis & Budget. In Owner’s & Operator’s Guide: ATR Family (Vol. 49). Horsham, West Sussex, UK: Nimrod Publications Ltd.
Arvidsson, R., Nordel¨of, A., & Brynolf, S. (2024). Life Cycle Assessment of a Two-Seater All-Electric Aircraft. The International Journal of Life Cycle Assessment, 29(2). doi: 10.1007/s11367-023-02244-z
Avanzini, G., de Angelis, E., & Giulietti, F. (2016). Optimal Performance and Sizing of a Battery-Powered Aircraft. Aerospace Science and Technology, 59. doi: 10.1016/j.ast.2016.10.015
Balack, P., Atanasov, G., & Zill, T. (2023). Architectural Trade-offs for a Hybrid-Electric Regional Aircraft. In Proceedings of the Aerospace Europe Conference. Lausanne, Switzerland. doi: 10.13009/eucass2023-463
Barke, A., Thies, C., Melo, S. P., Cerdas, F., Herrmann, C., & Spengler, T. S. (2023). Maintenance, Repair, and Overhaul of Aircraft with Novel Propulsion Concepts: Analysis of Environmental and Economic Impacts. Procedia CIRP, 116. doi: 10.1016/j.procir.2023.02.038
Brinkmann Pumps. (2024). Coolant Pump Main Catalogue 2024. Retrieved from www.brinkmannpumps.de (accessed on December 20, 2024)
Chin, J., Schnulo, S. L., Miller, T., Prokopius, K., & Gray, J. S. (2019). Battery Performance Modeling on SCEPTOR X-57 Subject to Thermal and Transient Considerations. In Proceedings of the AIAA Scitech 2019 Forum. San Diego, CA, US. doi: 10.2514/6.2019-0784
Clarke, M., & Alonso, J. J. (2021). Lithium–Ion Battery Modeling for Aerospace Applications. Journal of Aircraft, 58(6). doi: 10.2514/1.c036209
Cox, B., Mutel, C. L., Bauer, C., Mendoza Beltran, A., & van Vuuren, D. P. (2018). Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles. Environmental Science & Technology, 52(8). doi: 10.1021/acs.est.8b00261
Dauer, R. (2024a). Estimation of Scheduled, Routine Maintenance Implication for a Battery-Electric Propulsion System (Internal Report). University of Technology Dresden, German Aerospace Center (DLR).
Dauer, R. (2024b). System Design and Analysis of Battery-Electric Propulsion System (Internal Report). University of Technology Dresden, German Aerospace Center (DLR).
Eaton Aeropace Group. (2014). Airbus A318, A319, A320 A321 Overview. Eaton’s Aerospace Product Capabilities. Retrieved from www.eaton.com (accessed on December 20, 2024)
Edge, J. S., O’Kane, S., Prosser, R., Kirkaldy, N. D., Patel, A. N., Hales, A., . . . Offer, G. J. (2021). Lithium Ion Battery Degradation: What You Need to Know. Physical Chemistry Chemical Physics, 23(14). doi: 10.1039/d1cp00359c
Ellingsen, L. A.-W., Majeau-Bettez, G., Singh, B., Srivastava, A. K., Valøen, L. O., & Strømman, A. H. (2014). Life Cycle Assessment of a Lithium–Ion Battery Vehicle Pack. Journal of Industrial Ecology, 18(1). doi: 10.1111/jiec.12072
Eltohamy, H., van Oers, L., Lindholm, J., Raugei, M., Lokesh, K., Baars, J., . . . Steubing, B. (2024). Review of Current Practices of Life Cycle Assessment in Electric Mobility: A First Step towards Method Harmonization. Sustainable Production and Consumption, 52. doi: 10.1016/j.spc.2024.10.026
European Commission. (2020a). Determining the Environmental Impacts of Conventional and Alternatively Fuelled Vehicles through LCA: Final Report for the European Commission, DG Climate Action. Brussels, Belgium: Directorate - General for Climate Policy.
European Commission. (2020b). Stepping up Europe’s 2030 Climate Ambition: Investing in a Climate-Neutrral Future for the Benefit of our People: The 2030 Climate Target Plan. Brussels, Belgium. European Union Aviation Safety Agency. (2023). Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes (Amendment 28): CS-25.
Gnadt, A. R., Speth, R. L., Sabnis, J. S., & Barrett, S. R. (2019). Technical and Environmental Assessment of All-Electric 180-Passenger Commercial Aircraft. Progress in Aerospace Sciences, 105. doi: 10.1016/j.paerosci.2018.11.002
Hoelzen, J., Liu, Y., Bensmann, B.,Winnefeld, C., Elham, A., Friedrichs, J., & Hanke-Rauschenbach, R. (2018). Conceptual Design of Operation Strategies for Hybrid Electric Aircraft. Energies, 11(1). doi: 10.3390/en11010217
Hou, B., Bose, S., Marla, L., & Haran, K. (2024). Impact of Aviation Electrification on Airports: Flight Scheduling and Charging. Transactions on Intelligent Transportation Systems, 25(3). doi: 10.1109/tits.2023.3324310
International Organization for Standardisation. (2020a). Environmental Management - Life Cycle Assessment - Principles and Framework (ISO 14040:2006). Geneva, Switzerland.
International Organization for Standardisation. (2020b). Environmental Management - Life Cycle Assessment - Requirements and Guidelines (ISO 14044:2006). Geneva, Switzerland.
Kumar, R., Lee, D., Ag˘bulut, U¨ ., Kumar, S., Thapa, S., Thakur, A., . . . Shaik, S. (2024). Different Energy Storage Techniques: Recent Advancements, Applications, Limitations, and Efficient Utilization of Sustainable Energy. Journal of Thermal Analysis and Calorimetry, 149(5). doi: 10.1007/s10973-023-12831-9
Marmiroli, B., Messagie, M., Dotelli, G., & van Mierlo, J. (2018). Electricity Generation in LCA of Electric Vehicles: A Review. Applied Sciences, 8(8). doi: 10.3390/app8081384
Meissner, R., Rahn, A., Oestreicher, A.,Wicke, K., &Wende, G. (2024). Hydrogen-Based Aircraft Auxiliary Power Generation: Economic and Ecological Comparative Assessment of Preventive Maintenance Implications. IFACPapersOnLine, 58(8). doi: 10.1016/j.ifacol.2024.08.146
Nagy, A. (2019). Electric Aircraft - Present and Future. Production Engineering Archives, 23(23). doi: 10.30657/pea.2019.23.06
Ng, W., & Datta, A. (2019). Hydrogen Fuel Cells and Batteries for Electric-Vertical Takeoff and Landing Aircraft. Journal of Aircraft, 56(5). doi: 10.2514/1.c035218
Oestreicher, A., Rahn, A., Ramm, J., St¨ading, J., Keller, C., Wicke, K., &Wende, G. (2024). Sustainable Engine Maintenance: Evaluating the Ecological Impact of Life Limited Part Replacement. In Proceedings of the 34rd Congress of the International Council of the Aeronautical Sciences. Florence, Italy.
Peters, J. F., Baumann, M., Zimmermann, B., Braun, J., & Weil, M. (2017). The Environmental Impact of Li-Ion Batteries and the Role of Key Parameters – A Review. Renewable and Sustainable Energy Reviews, 67. doi: 10.1016/j.rser.2016.08.039
Rahn, A., Dahlmann, K., Linke, F., Kühlen, M., Sprecher, B., Dransfeld, C., & Wende, G. (2025). Quantifying Climate Impacts of Flight Operations: A Discrete-Event Life Cycle Assessment Approach. Transportation Research Part D: Transport and Environment, 141. doi: 10.1016/j.trd.2025.104646
Rahn, A., Schuch, M., Wicke, K., Sprecher, B., Dransfeld, C., & Wende, G. (2024). Beyond Flight Operations: Assessing the Environmental Impact of Aircraft Maintenance Through Life Cycle Assessment. Journal of Cleaner Production, 453. doi: 10.1016/j.jclepro.2024.142195
SAE International. (1996). ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airbone Systems and Equipment. Warrendale, PA, US. doi: 10.4271/arp4761
SAE International. (2010). ARP4754A: Guidelines for Development of Civil Aircraft and Systems. Warrendale, PA, US. doi: 10.4271/arp4754a
Schäfer, A. W., Barrett, S. R. H., Doyme, K., Dray, L. M., Gnadt, A. R., Self, R., . . . Torija, A. J. (2019). Technological, Economic and Environmental Prospects of All-Electric Aircraft. Nature Energy, 4(2). doi: 10.1038/s41560-018-0294-x
Schmalstieg, J., K¨abitz, S., Ecker, M., & Sauer, D. U. (2014). A Holistic Aging Model for Li(NiMnCo)O2 Based 18650 Lithium-Ion Batteries. Journal of Power Sources, 257. doi: 10.1016/j.jpowsour.2014.02.012
Staack, I., Sobron, A., & Krus, P. (2021). The Potential of Full-Electric Aircraft for Civil Transportation: From the Breguet Range Equation to Operational Aspects. CEAS Aeronautical Journal, 12(4). doi: 10.1007/s13272-021-00530-w
von Drachenfels, N., Husmann, J., Khalid, U., Cerdas, F., & Herrmann, C. (2023). Life Cycle Assessment of the Battery Cell Production: Using a Modular Material and Energy Flow Model to Assess Product and Process Innovations. Energy Technology, 11(5). doi: 10.1002/ente.202200673
Wolf, J.-A. (2024). Vergleichende Analyse der Wiederherstellungsaufwände in der Instandhaltung eines batterieelektrischen und eines konventionellen Antriebssystems (Internal Report). University of Stuttgart, German Aerospace Center (DLR).
Section
Technical Papers