Vibration-based Data-driven Fault Diagnosis of Rotating Machines Operating Under Varying Working Conditions A Review and Bibliometric Analysis
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The intelligent fault diagnosis of rotating machines has been significantly advanced by learning-based techniques in recent years. However, the performance of these techniques can drastically decrease under varying working conditions (VWC). This paper investigates the root causes of these decreased capabilities by analyzing the impact of VWC on each of the key steps in intelligent fault diagnosis for rotating machines. In addition, techniques proposed in the literature to mitigate these effects are reviewed and assessed for their relevance in industrial applications. A bibliometric study is also conducted to understand the evolution of research in this field over the past two decades. Beyond providing a synthesis of the existing literature, this review is intended for researchers, engineers, and industry professionals seeking to implement robust fault diagnosis systems under varying operational conditions. It offers insights on when and how these techniques can be effectively applied, depending on specific industrial scenarios and assumptions.
##plugins.themes.bootstrap3.article.details##
vibration-based fault diagnosis, rotating machines, data-driven fault diagnosis, varying working conditions
Al-Badour, F., Sunar, M., & Cheded, L. (2011, August). Vibration analysis of rotating machinery using time–frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing, 25(6), 2083–2101. doi: 10.1016/j.ymssp.2011.01.017
An, X., Jiang, D., Chen, J., & Liu, C. (2012, February). Application of the intrinsic time-scale decomposition method to fault diagnosis of wind turbine bearing. Journal of Vibration and Control, 18(2), 240–245. doi: 10.1177/1077546311403185
An, Y., Zhang, K., Chai, Y., Liu, Q., & Huang, X. (2023, February). Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions. Expert Systems with Applications, 212, 118802. doi: 10.1016/j.eswa.2022.118802
An, Z., Li, S., Wang, J., & Jiang, X. (2020, May). A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network. ISA Transactions, 100, 155–170. (115 citations (Semantic Scholar/DOI) [2023-11-09] 58 citations (Crossref) [2022-07-05]) doi: 10.1016/j.isatra.2019.11.010
Antoni, J. (2007, January). Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing, 21(1), 108–124. doi: 10.1016/j.ymssp.2005.12.002
Antoni, J. (2016, June). The infogram: Entropic evidence of the signature of repetitive transients. Mechanical Systems and Signal Processing, 74, 73–94. doi: 10.1016/j.ymssp.2015.04.034
Antoni, J., & Randall, R. (2006, February). The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 20(2), 308–331. doi: 10.1016/j.ymssp.2004.09.002
Avendaño-Valencia, L. D., & Fassois, S. D. (2017, December). Gaussian Mixture Random Coefficient model based framework for SHM in structures with time–dependent dynamics under uncertainty. Mechanical Systems and Signal Processing, 97, 59–83. doi: 10.1016/j.ymssp.2017.04.016
Barbini, L., Eltabach, M., Hillis, A., & du Bois, J. (2018, March). Amplitude-cyclic frequency decomposition of vibration signals for bearing fault diagnosis based on phase editing. Mechanical Systems and Signal Processing, 103, 76–88. doi: 10.1016/j.ymssp.2017.09.044
Baydar, N., & Ball, A. (2000, November). DETECTION OF GEAR DETERIORATION UNDER VARYING LOAD CONDITIONS BY USING THE INSTANTANEOUS POWER SPECTRUM. Mechanical Systems and Signal Processing, 14(6), 907–921. doi: 10.1006/mssp.1999.1281
Bonnardot, F., El Badaoui, M., Randall, R., Dani`ere, J.,& Guillet, F. (2005, July). Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation). Mechanical Systems and Signal Processing, 19(4), 766–785. doi: 10.1016/j.ymssp.2004.05.001
Bouhalais, M. L., Djebala, A., Ouelaa, N., & Babouri, M. K. (2018, February). CEEMDAN and OWMRA as a hybrid method for rolling bearing fault diagnosis under variable speed. The International Journal of Advanced Manufacturing Technology, 94(5-8), 2475–2489. doi: 10.1007/s00170-017-1044-0
Chen, B., Yin, P., Gao, Y., & Peng, F. (2018, November). Use of the correlated EEMD and time-spectral kurtosis for bearing defect detection under large speed variation. Mechanism and Machine Theory, 129, 162–174. doi: 10.1016/j.mechmachtheory.2018.07.017
Chen, H., Chen, P., Chen, W., Wu, C., Li, J., & Wu, J. (2017, January). Wind Turbine Gearbox Fault Diagnosis Based on Improved EEMD and Hilbert Square Demodulation. Applied Sciences, 7(2), 128. doi: 10.3390/app7020128
Chen, J., Zhou, D., Lyu, C., & Lu, C. (2018, December). An integrated method based on CEEMD-SampEn and the correlation analysis algorithm for the fault diagnosis of a gearbox under different working conditions. Mechanical Systems and Signal Processing, 113, 102–111. doi: 10.1016/j.ymssp.2017.08.010
Chen, L., Li, Q., Shen, C., Zhu, J., Wang, D., & Xia, M. (2022, March). Adversarial Domain-Invariant Generalization: A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions. IEEE Transactions on Industrial Informatics, 18(3), 1790–1800. doi: 10.1109/TII.2021.3078712
Chen, S., Yang, Y., Dong, X., Xing, G., Peng, Z., & Zhang, W. (2019, August). Warped Variational Mode Decomposition With Application to Vibration Signals of Varying-Speed Rotating Machineries. IEEE Transactions on Instrumentation and Measurement, 68(8), 2755–2767. doi: 10.1109/TIM.2018.2869440
Chen, Y., Li, Z., Jiang, Y., Gong, D., & Zhou, K. (2025, February). Sparse LPV-ARMA model for non-stationary vibration representation and its application on gearbox tooth crack detection under variable speed conditions. Mechanical
Systems and Signal Processing, 224, 112161. doi: 10.1016/j.ymssp.2024.112161
Chen, Y., Schmidt, S., Heyns, P. S., & Zuo, M. J. (2021, July). A time series model-based method for gear tooth crack detection and severity assessment under random speed variation. Mechanical Systems and Signal Processing, 156, 107605. doi: 10.1016/j.ymssp.2020.107605
Choi, H.-I., & Williams, W. (1989, June). Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(6), 862–871. (Conference Name: IEEE Transactions on Acoustics, Speech, and Signal Processing) doi: 10.1109/ASSP.1989.28057
Choudhury, M. D., Blincoe, K., & Dhupia, J. S. (2021, June). An Overview of Fault Diagnosis of Industrial Machines Operating Under Variable Speeds. Acoustics Australia, 49(2), 229–238. doi: 10.1007/s40857-021-00236-3
Climente-Alarcon, V., Antonino-Daviu, J. A., Haavisto, A., & Arkkio, A. (2015, September). Diagnosis of Induction Motors Under Varying Speed Operation by Principal Slot Harmonic Tracking. IEEE Transactions on Industry Applications, 51(5), 3591–3599. doi: 10.1109/TIA.2015.2413963
Cohen, L. (1989, July). Time-frequency distributions-a review. Proceedings of the IEEE, 77(7), 941–981. (Conference Name: Proceedings of the IEEE) doi: 10.1109/5.30749
Cui, L., Wang, J., & Lee, S. (2014, May). Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis. Journal of Sound and Vibration, 333(10), 2840–2862. doi: 10.1016/j.jsv.2013.12.029
Cui, L., Wu, N., Ma, C., & Wang, H. (2016, February). Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary. Mechanical Systems and Signal Processing, 68-69, 34–43. doi: 10.1016/j.ymssp.2015.05.032
CWRU. (2021, August). Bearing Data Center | Case School of Engineering | Case Western Reserve University.
Daubechies, I., Lu, J., & Wu, H.-T. (2009, December). Synchrosqueezed Wavelet Transforms: a Tool for Empirical Mode Decomposition. arXiv. (arXiv:0912.2437 [math])
Dragomiretskiy, K., & Zosso, D. (2014, February). Variational Mode Decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544. (Conference Name: IEEE Transactions on Signal Processing) doi: 10.1109/TSP.2013.2288675
Feng, K., Wang, K., Zhang, M., Ni, Q., & Zuo, M. J. (2017, March). A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions. Measurement Science and Technology, 28(3), 035003. doi: 10.1088/1361-6501/aa543e
Feng, Z., Chen, X., & Liang, M. (2016, August). Joint envelope and frequency order spectrum analysis based on iterative generalized demodulation for planetary gearbox fault diagnosis under nonstationary conditions. Mechanical Systems and Signal Processing, 76-77, 242–264. doi: 10.1016/j.ymssp.2016.02.047
Feng, Z., Qin, S., & Liang, M. (2016, January). Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions. Renewable Energy, 85, 45–56. doi: 10.1016/j.renene.2015.06.041
Feng, Z., Zhang, D., & Zuo, M. J. (2017). Adaptive Mode Decomposition Methods and Their Applications in Signal Analysis for Machinery Fault Diagnosis: A Review With Examples. IEEE Access, 5, 24301–24331. (Conference Name: IEEE Access) doi: 10.1109/ACCESS.2017.2766232
Feng, Z., Zhou, Y., Zuo, M. J., Chu, F., & Chen, X. (2017, June). Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis: A review with examples. Measurement, 103, 106–132. doi: 10.1016/j.measurement.2017.02.031
Feng, Z., Zhu, W., & Zhang, D. (2019, August). Time-Frequency demodulation analysis via Vold-Kalman filter for wind turbine planetary gearbox fault diagnosis under nonstationary speeds. Mechanical Systems and Signal Processing, 128, 93–109. doi: 10.1016/j.ymssp.2019.03.036
Fink, O., Wang, Q., Svens´en, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020, June). Potential, challenges and future directions for deep learning in prognostics and health management applications. Engineering Applications of Artificial Intelligence, 92, 103678. doi: 10.1016/j.engappai.2020.103678
Frei, M., & Osorio, I. (2007, 02). Intrinsic time-scale decomposition: Time-frequency-energy analysis and real-time filtering of non-stationary signals. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 463. doi: 10.1098/rspa.2006.1761
Gangsar, P., & Tiwari, R. (2018, August). Multifault Diagnosis of Induction Motor at Intermediate Operating Conditions Using Wavelet Packet Transform and Support Vector Machine. Journal of Dynamic Systems, Measurement, and Control, 140(8), 081014. doi: 10.1115/1.4039204
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., . . . Lempitsky, V. (2016, May). Domain-Adversarial Training of Neural Networks. arXiv. (arXiv:1505.07818 [cs, stat])
Gu, Y., Zeng, L., & Qiu, G. (2020, May). Bearing fault diagnosis with varying conditions using angular domain resampling technology, SDP and DCNN. Measurement, 156, 107616. doi: 10.1016/j.measurement.2020.107616
Guan, Y., Liang, M., & Necsulescu, D.-S. (2019, March). Velocity synchronous bilinear distribution for planetary gearbox fault diagnosis under non-stationary conditions. Journal of Sound and Vibration, 443, 212–229. doi: 10.1016/j.jsv.2018.11.039
Guo, S., Zhang, B., Yang, T., Lyu, D., & Gao, W. (2020, September). Multitask Convolutional Neural Network With Information Fusion for Bearing Fault Diagnosis and Localization. IEEE Transactions on Industrial Electronics, 67(9), 8005–8015. doi: 10.1109/TIE.2019.2942548
Guo, Y., Liu, T.-W., Na, J., & Fung, R.-F. (2012, December). Envelope order tracking for fault detection in rolling element bearings. Journal of Sound and Vibration, 331(25), 5644–5654. doi: 10.1016/j.jsv.2012.07.026
Han, T., Liu, C., Yang, W., & Jiang, D. (2019, February). A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults. Knowledge-Based Systems, 165, 474–487. doi: 10.1016/j.knosys.2018.12.019
Han, T., Liu, C., Yang, W., & Jiang, D. (2020, February). Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application. ISA Transactions, 97, 269–281. doi: 10.1016/j.isatra.2019.08.012
He, G., Ding, K., & Lin, H. (2016, March). Fault feature extraction of rolling element bearings using sparse representation. Journal of Sound and Vibration, 366, 514–527. doi: 10.1016/j.jsv.2015.12.020
He, X.-h., Wang, D., Li, Y.-f., & Zhou, C.-h. (2016). A Novel Bearing Fault Diagnosis Method Based on Gaussian Restricted Boltzmann Machine. Mathematical Problems in Engineering, 2016, 1–8. doi: 10.1155/2016/2957083
Heidari Bafroui, H., & Ohadi, A. (2014, June). Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection under varying speed conditions. Neurocomputing, 133, 437–445. doi: 10.1016/j.neucom.2013.12.018
Hou, G.-Q., & Lee, C.-M. (2019, January). Estimation of the Defect Width on the Outer Race of a Rolling Element Bearing under Time-Varying Speed Conditions. Shock and Vibration, 2019, 1–11. doi: 10.1155/2019/8479395
Hu, A., Xiang, L., & Gao, N. (2017, May). Fault diagnosis for the gearbox of wind turbine combining ensemble intrinsic time-scale decomposition with Wigner bi-spectrum entropy. Journal of Vibroengineering, 19(3), 1759–1770. doi: 10.21595/jve.2017.17465
Hu, Y., Tu, X., Li, F., & Meng, G. (2018, January). Joint High-Order Synchrosqueezing Transform and Multi-Taper Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions. Sensors, 18(1), 150. doi: 10.3390/s18010150
Huang, H., Baddour, N., & Liang, M. (2018, February). Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction. Journal of Sound and Vibration, 414, 43–60. doi: 10.1016/j.jsv.2017.11.005
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998, March). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. doi: 10.1098/rspa.1998.0193
Isham, M. F., Leong, M. S., Lim, M. H., & Zakaria, M. K. (2019). A Review on Variational Mode Decomposition for Rotating Machinery Diagnosis. MATEC Web of Conferences, 255, 02017. doi: 10.1051/matecconf/201925502017
Jiang, F., Ding, K., He, G., & Du, C. (2021, January). Sparse dictionary design based on edited cepstrum and its application in rolling bearing fault diagnosis. Journal of Sound and Vibration, 490, 115704. doi: 10.1016/j.jsv.2020.115704
Jiang, X., & Li, S. (2016, December). A dual path optimization ridge estimation method for condition monitoring of planetary gearbox under varying-speed operation. Measurement, 94, 630–644. doi: 10.1016/j.measurement.2016.09.009
Jiao, J., Zhao, M., Lin, J., & Liang, K. (2020, December). A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing, 417, 36–63. doi: 10.1016/j.neucom.2020.07.088
Kan, M. S., Tan, A. C., & Mathew, J. (2015, October). A review on prognostic techniques for non-stationary and nonlinear rotating systems. Mechanical Systems and Signal Processing, 62-63, 1–20. doi: 10.1016/j.ymssp.2015.02.016
Khan, S. A., & Kim, J.-M. (2016, April). Rotational speed invariant fault diagnosis in bearings using vibration signal imaging and local binary patterns. The Journal of the Acoustical Society of America, 139(4), EL100–EL104. doi: 10.1121/1.4945818
Kim, I., Wook Kim, S., Kim, J., Huh, H., Jeong, I., Choi, T., . . . Lee, S. (2024, May). Single domain generalizable and physically interpretable bearing fault diagnosis for unseen working conditions. Expert Systems with Applications, 241, 122455. doi: 10.1016/j.eswa.2023.122455
Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., . . . Liang, P. (2021, July). WILDS: A Benchmark of in-the-Wild Distribution Shifts. arXiv. (arXiv:2012.07421 [cs])
Kumar, A., Zhou, Y., & Xiang, J. (2021, January). Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects. Measurement, 168, 108402. doi: 10.1016/j.measurement.2020.108402
Kwok, H., & Jones, D. (2000, October). Improved instantaneous frequency estimation using an adaptive short-time Fourier transform. IEEE Transactions on Signal Processing, 48(10), 2964–2972. doi: 10.1109/78.869059
Lecl`ere, Q., Andr´e, H., & Antoni, J. (2016, December). A multi-order probabilistic approach for Instantaneous Angular Speed tracking debriefing of the CMMNO14 diagnosis contest. Mechanical Systems and Signal Processing, 81, 375–386. doi: 10.1016/j.ymssp.2016.02.053
Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K. (2020, April). Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587. doi: 10.1016/j.ymssp.2019.106587
Lei, Z., Zhang, P., Chen, Y., Feng, K., Wen, G., Liu, Z., . . . Yang, C. (2023, October). Prior knowledge-embedded metatransfer learning for few-shot fault diagnosis under variable operating conditions. Mechanical Systems and Signal Processing, 200, 110491. doi: 10.1016/j.ymssp.2023.110491
Lessmeier, C., Kimotho, J. K., Zimmer, D., & Sextro, W. (2016). Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification.
Li, C., Zhang, S., Qin, Y., & Estupinan, E. (2020, September). A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing, 407, 121–135. doi: 10.1016/j.neucom.2020.04.045
Li, H., Zhang, Y., & Zheng, H. (2009, October). Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network. Journal of Mechanical Science and Technology, 23(10), 2780–2789. doi: 10.1007/s12206-009-0730-8
Li, K., Ping, X., Wang, H., Chen, P., & Cao, Y. (2013, June). Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis. Sensors, 13(6), 8013–8041. doi: 10.3390/s130608013
Li, X., Zhang, W., Ma, H., Luo, Z., & Li, X. (2020, August). Domain generalization in rotating machinery fault diagnostics using deep neural networks. Neurocomputing, 403, 409–420. doi: 10.1016/j.neucom.2020.05.014
Li, Y., Ding, K., He, G., & Jiao, X. (2018, August). Non-stationary vibration feature extraction method based on sparse decomposition and order tracking for gearbox fault diagnosis. Measurement, 124, 453–469. doi: 10.1016/j.measurement.2018.04.063
Li, Y., Wei, Y., Feng, K., Wang, X., & Liu, Z. (2018). Fault Diagnosis of Rolling Bearing Under Speed Fluctuation Condition Based on Vold-Kalman Filter and RCMFE. IEEE Access, 6, 37349–37360. doi: 10.1109/ACCESS. 2018.2851966
Li, Y., Zhang, X., Chen, Z., Yang, Y., Geng, C., & Zuo, M. J. (2023, April). Time-frequency ridge estimation: An effective tool for gear and bearing fault diagnosis at time-varying speeds. Mechanical Systems and Signal Processing, 189, 110108. doi: 10.1016/j.ymssp.2023.110108
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., . . . Moher, D. (2009, December). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339(jul21 1), b2700–b2700. doi: 10.1136/bmj.b2700
Lin, J., & Zhao, M. (2014, June). A review and strategy for the diagnosis of speed-varying machinery. In 2014 International Conference on Prognostics and Health Management (pp. 1–9). doi: 10.1109/ICPHM.2014.7036368
Liu, D., Cheng, W., & Wen, W. (2018, September). Generalized demodulation with tunable E-Factor for rolling bearing diagnosis under time-varying rotational speed. Journal of Sound and Vibration, 430, 59–74. doi: 10.1016/j.jsv.2018.05.026
Liu, D., Cheng, W., &Wen, W. (2021, May). Intelligent crosscondition fault recognition of rolling bearings based on normalized resampled characteristic power and self-organizing map. Mechanical Systems and Signal Processing, 153, 107462. doi: 10.1016/j.ymssp.2020.107462
Liu, D., Cui, L., & Wang, H. (2023, December). Rotating Machinery Fault Diagnosis Under Time-Varying Speeds: A Review. IEEE Sensors Journal, 23(24), 29969–29990. doi: 10.1109/JSEN.2023.3326112
Liu, H., Zhang, J., Cheng, Y., & Lu, C. (2016, December). Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis. Journal of Sound and Vibration, 385, 350–371. doi: 10.1016/j.jsv.2016.09.005
Liu,W., Zhang,W., Han, J., &Wang, G. (2012, December). A new wind turbine fault diagnosis method based on the local mean decomposition. Renewable Energy, 48, 411–415. doi: 10.1016/j.renene.2012.05.018
Liu, Z., Tang, X., Wang, X., Mugica, J. E., & Zhang, L. (2021, July). Wind Turbine Blade Bearing Fault Diagnosis Under Fluctuating Speed Operations via Bayesian Augmented Lagrangian Analysis. IEEE Transactions on Industrial Informatics, 17(7), 4613–4623. doi: 10.1109/TII.2020.3012408
Lu, S., Yan, R., Liu, Y., & Wang, Q. (2019, July). Tacholess Speed Estimation in Order Tracking: A Review With Application to Rotating Machine Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 68(7), 2315–2332. doi: 10.1109/TIM.2019.2902806
Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., & Zhang, T. (2017, March). Deep Model Based Domain Adaptation for Fault Diagnosis. IEEE Transactions on Industrial Electronics, 64(3), 2296–2305. doi: 10.1109/TIE.2016.2627020
Meltzer, G., & Dien, N. P. (2004, September). Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps. Mechanical Systems and Signal Processing, 18(5), 985–992. doi: 10.1016/j.ymssp.2004.01.009 MFPT. (2013). Fault Data Sets.
Miao, Y., Wang, J., Zhang, B., & Li, H. (2022, February). Practical framework of Gini index in the application of machinery fault feature extraction. Mechanical Systems and Signal Processing, 165, 108333. doi: 10.1016/j.ymssp.2021.108333
Ming, A., Zhang, W., Qin, Z., & Chu, F. (2016, August). Fault feature extraction and enhancement of rolling element bearing in varying speed condition. Mechanical Systems and Signal Processing, 76-77, 367–379. doi: 10.1016/j.ymssp.2016.02.021
Mishra, C., Samantaray, A., & Chakraborty, G. (2016, May). Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate. Mechanical Systems and Signal Processing, 72-73, 206–222. doi: 10.1016/j.ymssp.2015.10.019
Moral-Mu˜noz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020, January). Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la informaci´on, 29(1). (Number: 1) doi: 10.3145/epi.2020.ene.03
Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., & Varnier, C. (2012). PRONOSTIA: An experimental platform for bearings accelerated degradation tests. , 9.
Niu, J., Lu, S., Liu, Y., Zhao, J., &Wang, Q. (2019, March). Intelligent Bearing Fault Diagnosis Based on Tacholess Order Tracking for a Variable-Speed AC Electric Machine. IEEE Sensors Journal, 19(5), 1850–1861. (Conference Name: IEEE Sensors Journal) doi: 10.1109/JSEN.2018.2883955
Pan, J., Chen, J., Zi, Y., Li, Y., & He, Z. (2016, May). Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment. Mechanical Systems and Signal Processing, 72-73, 160–183. doi: 10.1016/j.ymssp.2015.10.017
Pawlik, P., Kania, K., & Przysucha, B. (2025, January). Gearbox fault identification using auto-encoder without training data from the damaged machine. Measurement, 242, 115805. doi: 10.1016/j.measurement.2024.115805
Peeters, C., Antoni, J., Lecl`ere, Q., Verstraeten, T., & Helsen, J. (2022, March). Multi-harmonic phase demodulation method for instantaneous angular speed estimation using harmonic weighting. Mechanical Systems and Signal Processing, 167, 108533. doi: 10.1016/j.ymssp.2021.108533
Peeters, C., Lecl`ere, Q., Antoni, J., Lindahl, P., Donnal, J., Leeb, S., & Helsen, J. (2019). Review and comparison of tacholess instantaneous speed estimation methods on experimental vibration data. Mechanical Systems and Signal Processing.
Peng, D., Chen, Y., Zuo, M. J., & Mechefske, C. K. (2023, November). Assessment and improvement of the accuracy of tacholess instantaneous speed estimation. Mechanical Systems and Signal Processing, 202, 110706. doi: 10.1016/j.ymssp.2023.110706
Peng, D., Wang, H., Liu, Z., Zhang, W., Zuo, M. J., & Chen, J. (2020, July). Multibranch and Multiscale CNN for Fault Diagnosis of Wheelset Bearings Under Strong Noise and Variable Load Condition. IEEE Transactions on Industrial Informatics, 16(7), 4949–4960. doi: 10.1109/TII.2020.2967557
Peng, F., Yu, D., & Luo, J. (2011, February). Sparse signal decomposition method based on multi-scale chirplet and its application to the fault diagnosis of gearboxes. Mechanical Systems and Signal Processing, 25(2), 549–557. doi: 10.1016/j.ymssp.2010.06.004
Pu, Y., Tang, J., Li, X., Wei, C., Huang, W., & Ding, X. (2024, April). Single-domain incremental generation network for machinery intelligent fault diagnosis under unknown working speeds. Advanced Engineering Informatics, 60, 102400. doi: 10.1016/j.aei.2024.102400
Qian, Q., Pu, H., Tu, T., & Qin, Y. (2024, August). Variance discrepancy representation: A vibration characteristic-guided distribution alignment metric for fault transfer diagnosis. Mechanical Systems and Signal Processing, 217, 111544. doi: 10.1016/j.ymssp.2024.111544
Qian, Q., Zhou, J., & Qin, Y. (2023, September). Relationship Transfer Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Different Working Conditions. IEEE Transactions on Industrial Informatics, 19(9), 9898–9908. doi: 10.1109/TII.2022.3232842
Qiu, H., Lee, J., Lin, J., & Yu, G. (2006, February). Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. Journal of Sound and Vibration, 289(4-5), 1066–1090. doi: 10.1016/j.jsv.2005.03.007
Rai, A., & Upadhyay, S. (2016, April). A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribology International, 96, 289–306. doi: 10.1016/j.triboint.2015.12.037
Randall, R. B., & Antoni, J. (2011, February). Rolling element bearing diagnostics—A tutorial. Mechanical Systems and Signal Processing, 25(2), 485–520. doi: 10.1016/j.ymssp.2010.07.017
Rao, M., Yang, X., Cao, Z., Zuo, M. J., & Chu, F. (2024, December). Normalizing vibration signals with a novel piecewise power fitting method for intelligent fault detection of rotating machinery. Mechanical Systems and Signal Processing, 221, 111751. doi: 10.1016/j.ymssp.2024.111751
Rao, M., Zuo, M. J., & Tian, Z. (2023, April). A speed normalized autoencoder for rotating machinery fault detection under varying speed conditions. Mechanical Systems and Signal Processing, 189, 110109. doi: 10.1016/j.ymssp.2023.110109
Ren, H., Liu, W., Shan, M., & Wang, X. (2019, December). A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning. Measurement, 148, 106906. doi: 10.1016/j.measurement.2019.106906
Ren, H., Wang, J., Huang, W., Jiang, X., & Zhu, Z. (2023, November). Domain-invariant feature fusion networks for semi-supervised generalization fault diagnosis. Engineering Applications of Artificial Intelligence, 126, 107117. doi: 10.1016/j.engappai.2023.107117
Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., DePristo, M. A., . . . Lakshminarayanan, B. (2019, December). Likelihood Ratios for Out-of-Distribution Detection. arXiv.
Ruiz-Carcel, C., Jaramillo, V., Mba, D., Ottewill, J., & Cao, Y. (2016, January). Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions. Mechanical Systems and Signal Processing, 66-67, 699–714. doi: 10.1016/j.ymssp.2015.05.018
Saidi, L., Ali, J. B., & Fnaiech, F. (2014, September). Bispectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis. ISA Transactions, 53(5), 1650–1660. doi: 10.1016/j.isatra.2014.06.002
Schmidt, S., & Heyns, P. S. (2020, January). Normalisation of the amplitude modulation caused by time-varying operating conditions for condition monitoring. Measurement, 149, 106964. doi: 10.1016/j.measurement.2019.106964
Sehri, M., & Dumond, P. (2024, April). University of Ottawa constant and variable speed electric motor vibration and acoustic fault signature dataset. Data in Brief , 53, 110144. doi: 10.1016/j.dib.2024.110144
Shao, S., McAleer, S., Yan, R., & Baldi, P. (2019, April). Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Transactions on Industrial Informatics, 15(4), 2446–2455. doi: 10.1109/TII.2018.2864759
Sharma, V., & Parey, A. (2017, February). Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions. Mechanical Systems and Signal Processing, 85, 278–295. doi: 10.1016/j.ymssp.2016.08.015
Sharma, V., & Parey, A. (2020, January). Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed. Engineering Failure Analysis, 107, 104204. doi: 10.1016/j.engfailanal.2019.104204
Shi, J., Du, G., Ding, R., & Zhu, Z. (2019, September). Time Frequency Representation Enhancement via Frequency Matching Linear Transform for Bearing Condition Monitoring under Variable Speeds. Applied Sciences, 9(18), 3828. doi: 10.3390/app9183828
Shi, Y., Deng, A., Deng, M., Xu, M., Liu, Y., Ding, X., & Bian,W. (2023, July). Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions. Reliability Engineering & System Safety, 235, 109188. doi: 10.1016/j.ress.2023.109188
Siegel, D., Al-Atat, H., Shauche, V., Liao, L., Snyder, J., & Lee, J. (2012, May). Novel method for rolling element bearing health assessment—A tachometer-less synchronously averaged envelope feature extraction technique. Mechanical Systems and Signal Processing, 29, 362–376. doi: 10.1016/j.ymssp.2012.01.003
Singh, A., & Parey, A. (2017, March). Gearbox fault diagnosis under fluctuating load conditions with independent angular re-sampling technique, continuous wavelet transform and multilayer perceptron neural network. IET Science, Measurement & Technology, 11(2), 220–225. doi: 10.1049/iet-smt.2016.0291
Singh, A., & Parey, A. (2019, January). Gearbox fault diagnosis under non-stationary conditions with independent angular re-sampling technique applied to vibration and sound emission signals. Applied Acoustics, 144, 11–22. doi: 10.1016/j.apacoust.2017.04.015
Singh, G., & Ahmed Saleh Al Kazzaz, S. (2003, February). Induction machine drive condition monitoring and diagnostic research—a survey. Electric Power Systems Research, 64(2), 145–158. doi: 10.1016/S0378-7796(02)00172-4
Smith, J. S. (2005, December). The local mean decomposition and its application to EEG perception data. Journal of The Royal Society Interface, 2(5), 443–454. doi: 10.1098/rsif.2005.0058
Song, Q., Yang, L., Jiang, X., & Zhu, Z. (2025, July). Selfsupervised progressive learning for fault diagnosis under limited labeled data and varying conditions. Neurocomputing, 637, 130126. doi: 10.1016/j.neucom.2025.130126
Stander, C., Heyns, P., & Schoombie, W. (2002, November). USING VIBRATION MONITORING FOR LOCAL FAULT DETECTION ON GEARS OPERATING UNDER FLUCTUATING LOAD CONDITIONS. Mechanical Systems and Signal Processing, 16(6), 1005–1024. doi: 10.1006/mssp.2002.1479
Sun, Y., Wang, J., & Wang, X. (2023, March). Fault diagnosis of mechanical equipment in high energy consumption industries in China: A review. Mechanical Systems and Signal Processing, 186, 109833. doi: 10.1016/j.ymssp.2022.109833
Tama, B. A., Vania, M., Lee, S., & Lim, S. (2022, October). Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals. Artificial Intelligence Review. doi: 10.1007/s10462-022-10293-3
Tang, G., Wang, Y., Huang, Y., Liu, N., & He, J. (2020, August). Compound Bearing Fault Detection Under Varying Speed Conditions With Virtual Multichannel Signals in Angle Domain. IEEE Transactions on Instrumentation and Measurement, 69(8), 5535–5545. doi: 10.1109/TIM.2020.2965634
Tiboni, M., Remino, C., Bussola, R., & Amici, C. (2022, January). A Review on Vibration-Based Condition Monitoring of Rotating Machinery. Applied Sciences, 12(3), 972. doi: 10.3390/app12030972
Torres, M. E., Colominas, M. A., Schlotthauer, G., & Flandrin, P. (2011, May). A complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4144–4147). (ISSN: 2379-190X) doi: 10.1109/ICASSP.2011.5947265
Urbanek, J., Barszcz, T., Straczkiewicz, M., & Jablonski, A. (2017, January). Normalization of vibration signals generated under highly varying speed and load with application to signal separation. Mechanical Systems and Signal Processing, 82, 13–31. doi: 10.1016/j.ymssp.2016.04.017
Wang, B., Lei, Y., Li, N., & Li, N. (2020, March). A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings. IEEE Transactions on Reliability, 69(1), 401–412. doi: 10.1109/TR.2018.2882682
Wang, H., Ren, B., Song, L., & Cui, L. (2020, March). A Novel Weighted Sparse Representation Classification Strategy Based on Dictionary Learning for Rotating Machinery. IEEE Transactions on Instrumentation and Measurement, 69(3), 712–720. (Conference Name: IEEE Transactions on Instrumentation and Measurement) doi: 10.1109/TIM.2019.2906334
Wang, J., Cheng, F., Qiao, W., & Qu, L. (2018, May). Multiscale Filtering Reconstruction for Wind Turbine Gearbox Fault Diagnosis Under Varying-Speed and Noisy Conditions. IEEE Transactions on Industrial Electronics, 65(5), 4268–4278. doi: 10.1109/TIE.2017.2767520
Wang, J., Peng, Y., & Qiao, W. (2016, October). Current-Aided Order Tracking of Vibration Signals for Bearing Fault Diagnosis of Direct-Drive Wind Turbines. IEEE Transactions on Industrial Electronics, 63(10), 6336–6346. doi: 10.1109/TIE.2016.2571258
Wang, J., Qiao, W., & Qu, L. (2019, March). Wind Turbine Bearing Fault Diagnosis Based on Sparse Representation of Condition Monitoring Signals. IEEE Transactions on Industry Applications, 55(2), 1844–1852. doi: 10.1109/TIA.2018.2873576
Wang, J., Ren, H., Shen, C., Huang, W., & Zhu, Z. (2024, March). Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis. Reliability Engineering & System Safety, 243, 109879. doi: 10.1016/j.ress.2023.109879
Wang, L., Xiang, J., & Liu, Y. (2019, December). A time–frequency-based maximum correlated kurtosis deconvolution approach for detecting bearing faults under variable speed conditions. Measurement Science and Technology, 30(12), 125005. doi: 10.1088/1361-6501/ab3678
Wang, L.-H., Zhao, X.-P., Wu, J.-X., Xie, Y.-Y., & Zhang, Y.-H. (2017, November). Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network. Chinese Journal of Mechanical Engineering, 30(6), 1357–1368. doi: 10.1007/s10033-017-0190-5
Wang, R., Huang, W., Lu, Y., Zhang, X., Wang, J., Ding, C., & Shen, C. (2023, October). A novel domain generalization network with multidomain specific auxiliary classifiers for machinery fault diagnosis under unseen working conditions. Reliability Engineering & System Safety, 238, 109463. doi: 10.1016/j.ress.2023.109463
Wang, T., Han, Q., Chu, F., & Feng, Z. (2019, July). Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mechanical Systems and Signal Processing, 126, 662–685. doi: 10.1016/j.ymssp.2019.02.051
Wang, T., Liang, M., Li, J., & Cheng, W. (2014, March). Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis. Mechanical Systems and Signal Processing, 45(1), 139–153. doi: 10.1016/j.ymssp.2013.11.011
Wang, X., Lu, S., & Zhang, S. (2020, August). Rotating Angle Estimation for Hybrid Stepper Motors With Application to Bearing Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 69(8), 5556–5568. doi: 10.1109/TIM.2019.2963582
Wang, X., Makis, V., & Yang, M. (2010, April). A wavelet approach to fault diagnosis of a gearbox under varying load conditions. Journal of Sound and Vibration, 329(9), 1570–1585. doi: 10.1016/j.jsv.2009.11.010
Wang, Y., Tse, P. W., Tang, B., Qin, Y., Deng, L., Huang, T., & Xu, G. (2019, May). Order spectrogram visualization for rolling bearing fault detection under speed variation conditions. Mechanical Systems and Signal Processing, 122, 580–596. doi: 10.1016/j.ymssp.2018.12.037
Wang, Y., Yang, L., Xiang, J., Yang, J., & He, S. (2017, December). A hybrid approach to fault diagnosis of roller bearings under variable speed conditions. Measurement Science and Technology, 28(12), 125104. doi: 10.1088/1361-6501/aa9460
Wei, Li, Xu, & Huang. (2019, April). A Review of Early Fault Diagnosis Approaches and Their Applications in Rotating Machinery. Entropy, 21(4), 409. doi: 10.3390/e21040409
Wei, D., Wang, K., Heyns, S., & Zuo, M. J. (2019). Convolutional Neural Networks for Fault Diagnosis Using Rotating Speed Normalized Vibration. In A. Fernandez Del Rincon, F. Viadero Rueda, F. Chaari, R. Zimroz, & M. Haddar (Eds.), Advances in Condition Monitoring of Machinery in Non-Stationary Operations (pp. 67–76). Cham: Springer International Publishing.
Wei, S., Wang, D., Wang, H., & Peng, Z. (2021). Time-Varying Envelope Filtering for Exhibiting Space Bearing Cage Fault Features. IEEE Transactions on Instrumentation and Measurement, 70, 1–13. doi: 10.1109/TIM.2020.3033061
Wen, L., Gao, L., & Li, X. (2019, January). A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(1), 136–144. doi: 10.1109/TSMC.2017.2754287
Wu, Z., & Huang, N. E. (2009, January). ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD. Advances in Adaptive Data Analysis, 01(01), 1–41. doi: 10.1142/S1793536909000047
Xie, Z., Chen, J., Shi, Z., Liu, S., & He, S. (2025, January). Lightweight pyramid attention residual network for intelligent fault diagnosis of machine under sharp speed variation. Mechanical Systems and Signal Processing, 223, 111824. doi: 10.1016/j.ymssp.2024.111824
Xu, Z., Li, C., & Yang, Y. (2020, October). Fault diagnosis of rolling bearing of wind turbines based on the Variational Mode Decomposition and Deep Convolutional Neural Networks. Applied Soft Computing, 95, 106515. doi: 10.1016/j.asoc.2020.106515
Yan, R., Gao, R. X., & Chen, X. (2014, March). Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 96, 1–15. doi: 10.1016/j.sigpro.2013.04.015
Yang, J., Bai, Y., Wang, J., & Zhao, Y. (2019, September). Tri-axial vibration information fusion model and its application to gear fault diagnosis in variable working conditions. Measurement Science and Technology, 30(9), 095009. doi: 10.1088/1361-6501/ab2296
Yang, L., Jiang, X., Li, X., & Zhu, Z. (2023, October). Self-Supervised Learning With Signal Masking and Reconstruction for Machinery Fault Diagnosis Under Limited Labeled Data and Varying Working Condition. IEEE Sensors Journal, 23(20), 24862–24873. doi: 10.1109/JSEN.2023.3309696
Yang, Y., Wang, H., Cheng, J., & Zhang, K. (2013, October). A fault diagnosis approach for roller bearing based on VPMCD under variable speed condition. Measurement, 46(8), 2306–2312. doi: 10.1016/j.measurement.2013.03.023
Yang, Z., Xu, B., Luo, W., & Chen, F. (2022, February). Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review. Measurement, 189, 110460. doi: 10.1016/j.measurement.2021.110460
Yi, C., Yu, Z., Lv, Y., & Xiao, H. (2020, December). Reassigned second-order Synchrosqueezing Transform and its application to wind turbine fault diagnosis. Renewable Energy, 161, 736–749. doi: 10.1016/j.renene.2020.07.128
Yu, M., Pan, X., Feng, Z., & Fang, M. (2021, May). A method to diagnose compound fault of rolling bearing with ITD-AF. Journal of Vibroengineering, 23(3), 559–571. doi: 10.21595/jve.2020.21476
Yuan, P.-P., Zhao, Z.-J., & Ren, W.-X. (2025, January). A combination of improved spline-kernelled chirplet transform and multi-synchrosqueezing technique for analyzing nonstationary signals and structural instantaneous frequency identification. Mechanical Systems and Signal Processing, 223, 111873. doi: 10.1016/j.ymssp.2024.111873
Yuan, Z., Ma, Z., Li, X., & Cui, Y. (2023, January). Speed Adaptive Graph Convolutional Network for Wheelset-Bearing System Fault Diagnosis Under Time-Varying Rotation Speed Conditions. Journal of Vibration Engineering & Technologies. doi: 10.1007/s42417-022-00841-0
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018, April). mixup: Beyond Empirical Risk Minimization. arXiv. (arXiv:1710.09412 [cs, stat])
Zhang, J., Zhang, J., Zhong, M., Zheng, J., & Yao, L. (2020, October). A GOA-MSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions. Measurement, 163, 108067. doi: 10.1016/j.measurement.2020.108067
Zhang, W., Li, C., Peng, G., Chen, Y., & Zhang, Z. (2018, February). A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mechanical Systems and Signal Processing, 100, 439–453. doi: 10.1016/j.ymssp.2017.06.022
Zhao, C., & Shen, W. (2023, March). Adversarial Mutual Information-Guided Single Domain Generalization Network for Intelligent Fault Diagnosis. IEEE Transactions on Industrial Informatics, 19(3), 2909–2918. doi: 10.1109/TII.2022.3175018
Zhao, C., Zio, E., & Shen, W. (2024, May). Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study. Reliability Engineering & System Safety, 245, 109964. doi: 10.1016/j.ress.2024.109964
Zhao, M., Jia, X., Lin, J., Lei, Y., & Lee, J. (2018, January). Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox. Mechanical Systems and Signal Processing, 98, 16–31. doi: 10.1016/j.ymssp.2017.04.033
Zhao, M., Kang, M., Tang, B., & Pecht, M. (2018, May). Deep Residual Networks With Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes. IEEE Transactions on Industrial Electronics, 65(5), 4290–4300. doi: 10.1109/TIE.2017.2762639
Zhao, M., Lin, J.,Wang, X., Lei, Y., & Cao, J. (2013, October). A tacho-less order tracking technique for large speed variations. Mechanical Systems and Signal Processing, 40(1), 76–90. doi: 10.1016/j.ymssp.2013.03.024
Zhao, M., Lin, J., Xu, X., & Lei, Y. (2013, August). Tacholess Envelope Order Analysis and Its Application to Fault Detection of Rolling Element Bearings with Varying Speeds. Sensors, 13(8), 10856–10875. doi: 10.3390/s130810856
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019, January). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237. doi: 10.1016/j.ymssp.2018.05.050
Zhong, J., Lin, C., Gao, Y., Zhong, J., & Zhong, S. (2024, June). Fault diagnosis of rolling bearings under variable conditions based on unsupervised domain adaptation method. Mechanical Systems and Signal Processing, 215, 111430. doi: 10.1016/j.ymssp.2024.111430
Ziani, R., Hammami, A., Chaari, F., Felkaoui, A., & Haddar, M. (2019, September). Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector. Comptes Rendus Mecanique, 347(9), 663–675. doi: 10.1016/j.crme.2019.08.003