The Study of Trends in AI Applications for Vehicle Maintenance Through Keyword Co-occurrence Network Analysis

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 17, 2023
Wei Li Guoyan Li Sagar Kamarthi

Abstract

The increasing complexity of a vehicle's digital architecture has created new opportunities to revolutionize the maintenance paradigm. The Artificial Intelligence (AI) assisted maintenance system is a promising solution to enhance efficiency and reduce costs. This review paper studies the research trends in AI-assisted vehicle maintenance via keyword co-occurrence network (KCN) analysis. The KCN methodology is applied to systematically analyze the keywords extracted from 3153 peer-reviewed papers published between 2011 and 2022. The network metrics and trend analysis uncovered important knowledge components and structure of the research field covering AI applications for vehicle maintenance. The emerging and declining research trends in AI models and vehicle maintenance application scenarios were identified through trend visualizations. In summary, this review paper provides a comprehensive high-level overview of AI-assisted vehicle maintenance. It serves as a valuable resource for researchers and practitioners in the automotive industry. This paper also highlights potential research opportunities, limitations, and challenges related to AI-assisted vehicle maintenance.

Abstract 367 | PDF Downloads 358

##plugins.themes.bootstrap3.article.details##

Keywords

Vehicle Maintenance, Artificial Intelligence, Prognostics and Health Management, Keyword Co-occurrence Network

References
Abid, F. B., Sallem, M., & Braham, A. (2020). Robust Interpretable Deep Learning for Intelligent Fault Diagnosis of Induction Motors. IEEE Transactions on Instrumentation and Measurement, 69(6), 3506–3515. https://doi.org/10.1109/TIM.2019.2932162
AECC. (n.d.). Home. Automotive Edge Computing Consortium. Retrieved March 20, 2023, from https://aecc.org/
Agrawal, M., Eloot, K., Mancini, M., & Patel, A. (2020, July 29). Industry 4.0: Reimagining manufacturing operations after COVID-19 | McKinsey. McKinsey&Company. https://www.mckinsey.com/capabilities/operations/our-insights/industry-40-reimagining-manufacturing-operations-after-covid-19
Aguilar, D. L., Medina-Perez, M. A., Loyola-Gonzalez, O., Choo, K.-K. R., & Bucheli-Susarrey, E. (2023). Towards an Interpretable Autoencoder: A Decision-Tree-Based Autoencoder and its Application in Anomaly Detection. IEEE Transactions on Dependable and Secure Computing, 20(2), 1048–1059. https://doi.org/10.1109/TDSC.2022.3148331
AllCarFix. (2022, May 14). How Many Sensors on a Car—List of 8 Important Car Sensors. AllCarFix. https://allcarfix.com/how-many-sensors-on-a-car/
Al-Zeyadi, M., Andreu-Perez, J., Hagras, H., Royce, C., Smith, D., Rzonsowski, P., & Malik, A. (2020). Deep Learning Towards Intelligent Vehicle Fault Diagnosis. 2020 International Joint Conference on Neural Networks (IJCNN), 1–7. https://doi.org/10.1109/IJCNN48605.2020.9206972
Arena, F., Collotta, M., Luca, L., Ruggieri, M., & Termine, F. G. (2022). Predictive Maintenance in the Automotive Sector: A Literature Review. Mathematical and Computational Applications, 27(1), Article 1. https://doi.org/10.3390/mca27010002
Aslanpour, M. S., Gill, S. S., & Toosi, A. N. (2020). Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for future research. Internet of Things, 12, 100273. https://doi.org/10.1016/j.iot.2020.100273
Avatefipour, O., & Malik, H. (2018). State-of-the-Art Survey on In-Vehicle Network Communication (CAN-Bus) Security and Vulnerabilities (arXiv:1802.01725). arXiv. https://doi.org/10.48550/arXiv.1802.01725
Azure. (n.d.). Azure IoT Edge. Microsoft Azure. Retrieved March 20, 2023, from https://azure.microsoft.com/en-us/products/iot-edge
Brito, L. C., Susto, G. A., Brito, J. N., & Duarte, M. A. V. (2022). An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery. Mechanical Systems and Signal Processing, 163, 108105. https://doi.org/10.1016/j.ymssp.2021.108105
Brusamarello, B., Cardozo da Silva, J. C., de Morais Sousa, K., & Guarneri, G. A. (2023). Bearing Fault Detection in Three-Phase Induction Motors Using Support Vector Machine and Fiber Bragg Grating. IEEE Sensors Journal, 23(5), 4413–4421. https://doi.org/10.1109/JSEN.2022.3167632
Bühler, M. M., Jelinek, T., & Nübel, K. (2022). Training and Preparing Tomorrow’s Workforce for the Fourth Industrial Revolution. Education Sciences, 12(11), Article 11. https://doi.org/10.3390/educsci12110782
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. da P., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024
Coffin, D., Downing, D., Horowitz, J., & LaRocca, G. (2022). The Roadblocks of the COVID-19 Pandemic in the U.S. Automotive Industry. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4143474
Coleman, C., Damodaran, S., Chandramouli, M., & Deuel, E. (2017, May 9). Making maintenance smarter. Deloitte Insights. https://www2.deloitte.com/content/www/us/en/insights/focus/industry-4-0/using-predictive-technologies-for-asset-maintenance.html
Costa, N., & Sánchez, L. (2022). Variational encoding approach for interpretable assessment of remaining useful life estimation. Reliability Engineering & System Safety, 222, 108353. https://doi.org/10.1016/j.ress.2022.108353
Cui, S., Shin, J., Woo, H., Hong, S., & Joe, I. (2020). State-of-Health Estimation of Lithium-Ion Batteries with Attention-Based Deep Learning. In R. Silhavy, P. Silhavy, & Z. Prokopova (Eds.), Software Engineering Perspectives in Intelligent Systems (pp. 322–331). Springer International Publishing. https://doi.org/10.1007/978-3-030-63319-6_28
Design and Run-Time Information Exchange for Health-Ready Components. (2023). SAE International. https://doi.org/10.4271/JA6268_202303
Du, C., Zhang, S., Lin, Z., & Yu, F. (2019). Fault Identification of Vehicle Automatic Transmission based on Sparse Autoencoder and Support Vector Machine. IOP Conference Series: Materials Science and Engineering, 490(7), 072050. https://doi.org/10.1088/1757-899X/490/7/072050
Esperon-Miguez, M., John, P., & Jennions, I. K. (2013). A review of Integrated Vehicle Health Management tools for legacy platforms: Challenges and opportunities. Progress in Aerospace Sciences, 56, 19–34. https://doi.org/10.1016/j.paerosci.2012.04.003
Felke, T., Holland, S., & Raviram, S. (2017). Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 10(2), 380–389. https://doi.org/10.4271/2017-01-1623
Gherbi, E., Hanczar, B., Janodet, J.-C., & Klaudel, W. (2022). DAD: A Distributed Anomaly Detection framework for future In-vehicle network. 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 1–6. https://doi.org/10.1109/ICECCME55909.2022.9988392
Ghimire, R., Zhang, C., & Pattipati, K. R. (2018). A Rough Set-Theory-Based Fault-Diagnosis Method for an Electric Power-Steering System. IEEE/ASME Transactions on Mechatronics, 23(5), 2042–2053. https://doi.org/10.1109/TMECH.2018.2863119
Goyal, D., Choudhary, A., Pabla, B. S., & Dhami, S. S. (2020). Support vector machines based non-contact fault diagnosis system for bearings. Journal of Intelligent Manufacturing, 31(5), 1275–1289. https://doi.org/10.1007/s10845-019-01511-x
Gültekin, Ö., Cinar, E., Özkan, K., & Yazıcı, A. (2022a). Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle. Expert Systems with Applications, 200, 117055. https://doi.org/10.1016/j.eswa.2022.117055
Gültekin, Ö., Cinar, E., Özkan, K., & Yazıcı, A. (2022b). Real-Time Fault Detection and Condition Monitoring for Industrial Autonomous Transfer Vehicles Utilizing Edge Artificial Intelligence. Sensors, 22(9), Article 9. https://doi.org/10.3390/s22093208
Haque, M., Shaheed, M. N., & Choi, S. (2018). Deep Learning Based Micro-Grid Fault Detection and Classification in Future Smart Vehicle. 2018 IEEE Transportation Electrification Conference and Expo (ITEC), 1082–1107. https://doi.org/10.1109/ITEC.2018.8450201
Hensley, R., Maurer, I., & Padhi, A. (2021, July 16). Automotive industry after COVID-19 | McKinsey. McKensey&Company. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/how-the-automotive-industry-is-accelerating-out-of-the-turn
Hu, W., Sun, Q., & Mechefske, C. K. (2013). Condition monitoring for the endurance test of automotive light assemblies. The International Journal of Advanced Manufacturing Technology, 66(5), 1087–1095. https://doi.org/10.1007/s00170-012-4391-x
Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2022). Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 217, 108063. https://doi.org/10.1016/j.ress.2021.108063
IBM. (2022, July 26). IBM Edge Application Manager. IBM. https://www.ibm.com/cloud/edge-application-manager
IVHM Design Guidelines. (2019). SAE International. https://doi.org/10.4271/ARP6407
Iyengar, A., & Portilla, I. (2022, October 24). Models Deployed at the Edge. IBM. https://www.ibm.com/cloud/blog/models-deployed-at-the-edge
Jia, X., Duan, S., Lee, C., Radecki, P., & Lee, J. (2019). A Methodology for the Early Diagnosis of Vehicle Torque Converter Clutch Degradation. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 529–534. https://doi.org/10.1109/COASE.2019.8843188
Ke, Y., Zhou, R., Zhu, R., & Peng, W. (2021). State of Health Estimation of Lithium Ion Battery with Uncertainty Quantification Based on Bayesian Deep Learning. 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE), 12–18. https://doi.org/10.1109/SRSE54209.2021.00009
Kim, K., Son, S., & Lee, B. (2020). Autonomous Vehicles Diagnosis Platform(AVDP) based on deep learning and loopback. 2020 International Conference on Information Networking (ICOIN), 687–689. https://doi.org/10.1109/ICOIN48656.2020.9016517
Kim, M. S., Yun, J. P., & Park, P. (2022). Deep Learning-Based Explainable Fault Diagnosis Model With an Individually Grouped 1-D Convolution for Three-Axis Vibration Signals. IEEE Transactions on Industrial Informatics, 18(12), 8807–8817. https://doi.org/10.1109/TII.2022.3147828
Kim, S. W., Oh, K.-Y., & Lee, S. (2022). Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries. Applied Energy, 315, 119011. https://doi.org/10.1016/j.apenergy.2022.119011
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), Article 7553. https://doi.org/10.1038/nature14539
Li, D., Liu, P., Zhang, Z., Zhang, L., Deng, J., Wang, Z., Dorrell, D. G., Li, W., & Sauer, D. U. (2022). Battery Thermal Runaway Fault Prognosis in Electric Vehicles Based on Abnormal Heat Generation and Deep Learning Algorithms. IEEE Transactions on Power Electronics, 37(7), 8513–8525. https://doi.org/10.1109/TPEL.2022.3150026
Li, G., Yuan, C., Kamarthi, S., Moghaddam, M., & Jin, X. (2021). Data science skills and domain knowledge requirements in the manufacturing industry: A gap analysis. Journal of Manufacturing Systems, 60, 692–706. https://doi.org/10.1016/j.jmsy.2021.07.007
Li, T., Sun, C., Li, S., Wang, Z., Chen, X., & Yan, R. (2022). Explainable Graph Wavelet Denoising Network for Intelligent Fault Diagnosis. IEEE Transactions on Neural Networks and Learning Systems, 1–14. https://doi.org/10.1109/TNNLS.2022.3230458
Li, T., Zhao, Z., Sun, C., Cheng, L., Chen, X., Yan, R., & Gao, R. X. (2022). WaveletKernelNet: An Interpretable Deep Neural Network for Industrial Intelligent Diagnosis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(4), 2302–2312. https://doi.org/10.1109/TSMC.2020.3048950
Li, Y., Maleki, M., Banitaan, S., & Chen, M. (2022). State of Health Indicator Modeling of Lithium-ion Batteries Using Machine Learning Techniques. 2022 IEEE International Conference on Electro Information Technology (eIT), 440–445. https://doi.org/10.1109/eIT53891.2022.9814009
Liu, H., Liu, Z., Jia, W., & Lin, X. (2021). Remaining Useful Life Prediction Using a Novel Feature-Attention-Based End-to-End Approach. IEEE Transactions on Industrial Informatics, 17(2), 1197–1207. https://doi.org/10.1109/TII.2020.2983760
Lo, N. G., Flaus, J.-M., & Adrot, O. (2019). Review of Machine Learning Approaches In Fault Diagnosis applied to IoT Systems. 2019 International Conference on Control, Automation and Diagnosis (ICCAD), 1–6. https://doi.org/10.1109/ICCAD46983.2019.9037949
Long, J., Mou, J., Zhang, L., Zhang, S., & Li, C. (2021). Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots. Journal of Manufacturing Systems, 61, 736–745. https://doi.org/10.1016/j.jmsy.2020.08.010
Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
Mwangi, D., Trivedi, T., & Kothari, N. (2022). Open Switch Fault Detection in Electric Vehicle Drives Using Support Vector Machine. 2022 2nd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON), 1–6. https://doi.org/10.1109/ODICON54453.2022.10010036
Nieto González, J. P. (2018). Vehicle fault detection and diagnosis combining an AANN and multiclass SVM. International Journal on Interactive Design and Manufacturing (IJIDeM), 12(1), 273–279. https://doi.org/10.1007/s12008-017-0378-z
Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), Article 12. https://doi.org/10.1038/nbt1206-1565
NVIDIA. (n.d.). The EGX Platform. NVIDIA. Retrieved March 20, 2023, from https://www.nvidia.com/en-us/data-center/products/egx/
Onnela, J.-P., Saramäki, J., Kertész, J., & Kaski, K. (2005). Intensity and coherence of motifs in weighted complex networks. Physical Review E, 71(6), 065103. https://doi.org/10.1103/PhysRevE.71.065103
Ozek, B., Lu, Z., Pouromran, F., & Kamarthi, S. (2022). Review and Analysis of Pain Research Literature through Keyword Co-occurrence Networks (arXiv:2211.04289). arXiv. https://doi.org/10.48550/arXiv.2211.04289
Ren, J., Ren, R., Green, M., & Huang, X. (2019). A Deep Learning Method for Fault Detection of Autonomous Vehicles. 2019 14th International Conference on Computer Science & Education (ICCSE), 749–754. https://doi.org/10.1109/ICCSE.2019.8845483
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier (arXiv:1602.04938; Version 3). arXiv. https://doi.org/10.48550/arXiv.1602.04938
Shi, Q., & Zhang, H. (2021). Fault Diagnosis of an Autonomous Vehicle With an Improved SVM Algorithm Subject to Unbalanced Datasets. IEEE Transactions on Industrial Electronics, 68(7), 6248–6256. https://doi.org/10.1109/TIE.2020.2994868
Singh, S. (2020, August 5). Top 20 Post-Covid Automotive Trends. Forbes. https://www.forbes.com/sites/sarwantsingh/2020/08/05/top-20-post-covid-automotive-trends/
Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering & System Safety, 215, 107864. https://doi.org/10.1016/j.ress.2021.107864
Tong, W., Hussain, A., Bo, W. X., & Maharjan, S. (2019). Artificial Intelligence for Vehicle-to-Everything: A Survey. IEEE Access, 7, 10823–10843. https://doi.org/10.1109/ACCESS.2019.2891073
Tuerxun, W., Chang, X., Hongyu, G., Zhijie, J., & Huajian, Z. (2021). Fault Diagnosis of Wind Turbines Based on a Support Vector Machine Optimized by the Sparrow Search Algorithm. IEEE Access, 9, 69307–69315. https://doi.org/10.1109/ACCESS.2021.3075547
Umair, M., Cheema, M. A., Cheema, O., Li, H., & Lu, H. (2021). Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities, Transportation and Industrial IoT. Sensors, 21(11), 3838. https://doi.org/10.3390/s21113838
Wang, D., Chen, Y., Shen, C., Zhong, J., Peng, Z., & Li, C. (2022). Fully interpretable neural network for locating resonance frequency bands for machine condition monitoring. Mechanical Systems and Signal Processing, 168, 108673. https://doi.org/10.1016/j.ymssp.2021.108673
Wang, F., Chen, Z., & Song, G. (2020). Monitoring of multi-bolt connection looseness using entropy-based active sensing and genetic algorithm-based least square support vector machine. Mechanical Systems and Signal Processing, 136, 106507. https://doi.org/10.1016/j.ymssp.2019.106507
Wang, Y., Cui, T., Zhang, F., Dong, T., & Li, S. (2016). Fault diagnosis of diesel engine lubrication system based on PSO-SVM and centroid location algorithm. 2016 International Conference on Control, Automation and Information Sciences (ICCAIS), 221–226. https://doi.org/10.1109/ICCAIS.2016.7822464
Wang, Z., Yao, L., & Cai, Y. (2020). Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine. Measurement, 156, 107574. https://doi.org/10.1016/j.measurement.2020.107574
Wang, Z., Yao, L., Cai, Y., & Zhang, J. (2020). Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis. Renewable Energy, 155, 1312–1327. https://doi.org/10.1016/j.renene.2020.04.041
Wang, Z., Yao, L., Chen, G., & Ding, J. (2021). Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals. ISA Transactions, 114, 470–484. https://doi.org/10.1016/j.isatra.2020.12.054
Wu, J., Guo, P., Cheng, Y., Zhu, H., Wang, X.-B., & Shao, X. (2020). Ensemble Generalized Multiclass Support-Vector-Machine-Based Health Evaluation of Complex Degradation Systems. IEEE/ASME Transactions on Mechatronics, 25(5), 2230–2240. https://doi.org/10.1109/TMECH.2020.3009449
Xia, K., Liu, B., Fu, X., Guo, H., He, S., Yu, W., Xu, J., & Dong, H. (2019). Wavelet entropy analysis and machine learning classification model of DC serial arc fault in electric vehicle power system. IET Power Electronics, 12(15), 3998–4004. https://doi.org/10.1049/iet-pel.2019.0375
Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., & Lv, W. (2019). Edge Computing Security: State of the Art and Challenges. Proceedings of the IEEE, 107(8), 1608–1631. https://doi.org/10.1109/JPROC.2019.2918437
Xu, X., Zhang, N., Yan, Y., Qin, L., & Qian, F. (2018). Smooth iteration online support tension machine algorithm and application in fault diagnosis of electric vehicle extended range. Advances in Mechanical Engineering, 10(12), 1687814018816563. https://doi.org/10.1177/1687814018816563
Xue, Y., Dou, D., & Yang, J. (2020). Multi-fault diagnosis of rotating machinery based on deep convolution neural network and support vector machine. Measurement, 156, 107571. https://doi.org/10.1016/j.measurement.2020.107571
Yao, L., Fang, Z., Xiao, Y., Hou, J., & Fu, Z. (2021). An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine. Energy, 214, 118866. https://doi.org/10.1016/j.energy.2020.118866
Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X., & Wei, M. (2019). A Review on Deep Learning Applications in Prognostics and Health Management. IEEE Access, 7, 162415–162438. https://doi.org/10.1109/ACCESS.2019.2950985
Section
Technical Papers