A Fault- Tolerant DC-DC Converter with Zero Interruption Time Using Capacitor Health Prognosis
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
A high-end critical electronic system is expected to have hundreds of electronic subsystems, which rely on the Power Management Unit (PMU) to be energized. Having an efficient PMU is crucial and it requires reliable and well-structured voltage buck converters to translate the supplied voltage levels. The buck converters employed in PMU are expected to be fault tolerant and supply uninterrupted power while serving critical subsystems. Active redundant parallel buck converters employed in PMU to achieve fault tolerance increases overhead in terms of area, cost and power dissipation. In this paper, a DC-DC converter is designed for the PMU by combining two legs of buck converters with an effective output of 3.3 V. A simple yet effective technique is proposed to design a fault-tolerant buck DC-DC converter by bypassing a faulty converter leg. The proposed system utilizes an online signal processing-based method for prognostic fault detection. Ripple content in the voltage of the output Aluminum Electrolytic Capacitor (AEC) is monitored and used as a primary health indicator for the primary buck converter leg. Increase in the output ripple due to degradation is used for the prognosis of primary converter failure. The secondary buck converter leg is activated only upon the confirmed prognosis of a faulty primary converter leg to avoid false triggering. The timely prognosis of primary converter failure and activation of secondary converter facilitates uninterrupted power supply. An experimental setup is built and tested in the laboratory. Experimental results indicate a smooth transition from the primary converter leg to the secondary demonstrating an uninterrupted power supply along with the simplicity and effectiveness of the proposed solution
##plugins.themes.bootstrap3.article.details##
Aluminium Electrolytic Capacitor, Buck, Fault-tolerant, Power Management Unit, Prognosis, Degradation
Costa, L. F., Buticchi, G., & Liserre, M. (2018). A family of series resonant DC-DC converters with fault-tolerance capability. IEEE Transactions on Industry Applications, 54(1), 335-344. doi: 10.1109/TIA.2017.2757900
Costa, L., Buticchi, G., & Liserre, M. (2017). A fault- tolerant series resonant DC-DC converter. IEEE Transactions on Power Electronics, 32(2), 900-905. doi:10.1109/TPEL.2016.2585668
Dhananjaya, M., M, J. S., Padmanaban, S., Almakhles, D., & Potnuru, D. (2021). A New Configuration of Switch and Source Fault-Tolerant Dual-Input Single-Output DC-DC Converter. In 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON) (pp. 1-6). doi: 10.1109/GUCON50781.2021.9573998
DOI:10.23919/CJEE.2018.8471284
E. Jamshidpour, P. Poure, E. Gholipour and S. Saadate, "Single-Switch DC–DC Converter With Fault-Tolerant Capability Under Open- and Short-Circuit Switch Failures" in IEEE Transactions on Power Electronics, 2015, doi: 10.1109/TPEL.2014.2342878.
Figueiredo, R. E., Monteiro, V., Afonso, J., A., Pinto, J., G., Salgado, J., A., Cardoso, L., A., L., Nogueira, M., Abreu, A., Afonso, J., L., (2021). Efficiency Comparison of Different DC-DC Converter Architectures for a Power Supply of a LiDAR System. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 375. Springer. doi: 10.1007/978-3-030- 73585-2_7
Geddam, K. K., & Elangovan, D. (2020). Review on fault-diagnosis and fault-tolerance for DC–DC converters. IET Power Electronics. Advance online publication. doi: 10.1049/iet-pel.2019.0672
H. Givi, E. Farjah and T. Ghanbari, "A Comprehensive Monitoring System for Online Fault Diagnosis and Aging Detection of Non-Isolated DC–DC Converters’ Components" in IEEE Transactions on Power Electronics, 2019, doi: 10.1109/TPEL.2018.2875830.
Jagtap, S., & More, D. (2020). Switch Open-circuit Fault Diagnosis and Fault-Tolerant Control Strategy for DC- DC Converters. In 2020 International Conference on Communication and Signal Processing (ICCSP) (pp. 1399-1405). doi: 10.1109/ICCSP48568.2020.9182063.
Jagtap, S., & More, D. (2020). Switch Open-circuit Fault Diagnosis and Fault-Tolerant Control for Boost DC-DC Converter. Procedia Computer Science, 171, 934-940. doi: 10.1016/j.procs.2020.04.101
Kulkarni, C., Biswas, G., Koutsoukos, X., Celaya, J., & Goebel, K. (2010). Experimental Studies of Ageing in Electrolytic Capacitors. Retrieved from https://www.researchgate.net/publication/228874152_Experimental_Studies_of_Ageing_in_Electrolytic_Capac itors.
Kumar, S., & Rajpurohit, B. S. (2020). A Novel Fault Tolerant Control Scheme for Power Converter. In 2020 IEEE International Power and Renewable Energy Conference (pp. 1-5), doi: 10.1109/IPRECON49514.2020.9315247
Li, J., Pan, K., Su, Q., & Zhao, X.-Q. (2019). Sensor Fault Detection and Fault-Tolerant Control for Buck Converter via Affine Switched Systems. IEEE Access, 7, 47124-47134. doi: 10.1109/ACCESS.2019.2909124
Nesgaard, C., & Andersen, M. (2004). Fault Tolerant Power Systems. Technical University of Denmark. PhD thesis. Newark. (n.d.). A "Beginner's Guide" to Fault Tolerant Power Supplies. Retrieved fromhttps://www.newark.com/pdfs/techarticles/mro/guideToFaultTolerantSupplies.pdf
Rahimi, T., Jahan, H. K, Abdadifarad, A., Akbari, M., Ghavidel, P., Farhadi, M., Hossein, H., S., (2021). Fault-Tolerant Performance Enhancement of DC-DC Converters with High-Speed Fault Clearing-unit based Redundant Power Switch Configurations. In 2021 IEEE Electrical Power and Energy Conference (EPEC) (pp. 492-497). doi: 10.1109/EPEC52095.2021.9621756
Sharma, K. P., & Tippeswamy, V. (2022). Study of Capacitor & Diode Aging effects on Output Ripple in Voltage Regulators and Prognostic Detection of Failure. International Journal of Electronics and Telecommunications, 68(2), 281-286. doi: 10.24425/ijet.2022.139879
Sharma, K. P., S., & Tippeswamy, V. (2019). Analysis of capacitor parameters signature variation with ageing in critical healthcare power management systems. In 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1036-1040). Tirunelveli, India, Doi: 10.1109/ICSSIT46314.2019.8987938
Sharma, K. P., S., & Tippeswamy, V. (2021). Review of Fault Tolerant Power Converters Deployed In Critical Applications. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 306-311). doi: 10.1109/ICESC51422.2021.9532671
Soon, J. L., Lu, D. D.-C., Peng, J. C.-H., & Xiao, W. (2020). Reconfigurable Non-isolated DC–DC Converter with Fault-Tolerant Capability. IEEE Transactions on Power Electronics, 35(9), 8934-8943. doi: 10.1109/TPEL.2020.2971837
Texas Instruments. (n.d.). A FET OR-ing Circuit for Fault Tolerant Power Systems. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOr_Wrs63wAhWC8XMBHd9aC6YQFjABegQIAxAD&url=https%3A%2F%2Fwww.ti.com%2Flit%2Fpdf%2Fslva116&usg=AOvVaw1uZy6hETgpKs5fGE4Fkfrl
Xu, D., & Chen, H. (2021). Fault-tolerant strategy without redundant switches for PV systems based on differential power processing converters. Solar Energy, 230, 365-375. doi: 10.1016/j.solener.2021.08.082
Yarmunja, K., M., Sharma, K. P., & Nandihalli, R. (2016). Overview of fault diagnosis and detection methods used in Switched Mode Power Supplies. In 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT) (pp.708-712). Bangalore. doi: 10.1109/ICATCCT.2016.7912091
Zhang, Y., & Jiang, J. (2008). Bibliographical review on reconfigurable fault tolerant control systems. Annual Reviews in Control, 32(2), 229–252. DOI:10.1016/j.arcontrol.2008.03.008
Zhang, Y., Zhang, C., & Chen, X. (2019). Artificial intelligence-enabled 5G networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 21(3), 2495-2522. DOI:10.1109/MWC.001.1900323