Review for State-of-the-Art Health Monitoring Technologies on Airframe Fuel Pumps

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 10, 2022
Tedja Verhulst David Judt
Craig Lawson
Yongmann Chung
Osama Al-Tayawe Geoff Ward

Abstract

Aircraft maintenance is an essential cost borne by the airline. Improving maintenance practices for day-to-day operations can lead to significant financial savings. The benefits of effective maintenance are derived from the avoided costs caused by unexpected breakdowns and from maximising aircraft flight time transporting passengers.  The fuel system is a crucial part of the entire aircraft as it ensures delivery of the fuel to the engine and a key component within this system are the fuel pumps. These airborne fuel pumps are classified between the pumps installed in the airframe fuel system and in the engine fuel system. Past works have investigated the performance characteristics of these pumps during flight, however there are no reviews related to the present Health Monitoring (HM) capabilities under flight conditions. HM refers to the field of diagnosing faults or predicting the remaining useful life (RUL) of the pump and the focus of this review is to highlight the HM technologies suitable for aircraft fuel pumps. This is done by first reviewing the technologies and concepts related to HM of fuel pumps. Second a literature review is carried out on pump and motor faults is carried out, drawing on examples from aerospace and other relevant industries. Section 6: Conclusion, discusses the HM technologies have been applied to aerospace fuel pumps and highlights the gaps in capabilities, based on the findings of the literature review carried out in Section 4: Common Faults and Section 5: HM Sensing Methods to suggest future developments in this field. It was found that there is a large scope for development for the HM airframe fuel pumps, based on reviewing the present state of the art. Furthermore, there are no clear strategies formulated by airframe manufacturers and equipment suppliers to test and implement existing HM solutions to operate under flight conditions. This highlights the need to develop HM in this field and a requirement for further research to allow this technology to be a part of routine aircraft

Abstract 1529 | PDF Downloads 704

##plugins.themes.bootstrap3.article.details##

Keywords

Wear, Health Monitoring, Condition Monitoring, Cavitation, Fault, Motor, Centrifugal Pump, Hydraulic Pump

References
Adamkowski, A., Henke, A., & Lewandowski, M. (2016). Resonance of Torsional Vibrations of Centrifugal Pump Shafts Due to Cavitation Erosion of Pump Impellers. Engineering Failure Analysis, 70, 56-72. https://doi.org/10.1016/j.engfailanal.2016.07.011
Al-Tayawe, O., Ward, G., & Verhulst, T. (2018). Pump Health Monitoring. (US20170057667A1). USPTO. Retrieved from https://patents.google.com/patent/
US20170057667A1/en
Bergada, J., Kumar, S., Davies, D., & Watton, J. (2012). A Complete Analysis of Axial Piston Pump Leakage and Output Flow Ripples. Applied Mathematical Modelling, 36(4), 1731-1751. https://doi.org/10.1016/j.apm.2011.09.016
Brunhart, M., Soteriou, C., Daveau, C., Gavaises, M., Koukouvinis, P., & Winterbourn, M. (2020). Cavitation erosion risk indicators for a thin gap within a diesel fuel pump. Wear, 442-443, 203024. https://doi.org/10.1016/j.wear.2019.203024
Cameron, J., Thomson, W., & Dow, A. (1986). Vibration and current monitoring for detecting airgap eccentricity in large induction motors. IEE Proceedings B Electric Power Applications, 133(3), 155. https://doi.org/10.1049/ip-b.1986.0022
Centers, P., & Price, F. (1988). Real Time Simultaneous In-line Wear and Lubricant Condition Monitoring. Wear, 123(3), 303-312. https://doi.org/10.1016/0043-1648(88)90146-9
De Martin, A., Jacazio, G., & Vachtsevanos, G. (2020). Windings Fault Detection and Prognosis in Electro-Mechanical Flight Control Actuators Operating in Active-Active Configuration. International Journal of Prognostics And Health Management, 8(2), 1-13. https://doi.org/10.36001/ijphm.2017.v8i2.2633
Delaloye, J. (2022). Electric Motor Driven Lubrication Pump and Lubrication System Prognostic and Health Management System and Method. 20090299535A1: USPTO. Retrieved from
https://patents.google.com/patent/US20090299535A1/
en?oq=20090299535
Digman, W. J. (1962). Effects of Fuel Contamination on Corrosion of Aircraft Fuel System. Pre-1964 SAE Technical Papers.
Djamaï, A., Brunetière, N., & Tournerie, B. (2010). Numerical Modeling of Thermohydrodynamic Mechanical Face Seals. Tribology Transactions, 53(3), 414-425. https://doi.org/10.1080/10402000903350612
Du, J., Wang, S., & Zhang, H. (2013). Layered clustering multi-fault diagnosis for hydraulic piston pump. Mechanical Systems and Signal Processing, 36(2), 487-504. https://doi.org/10.1016/j.ymssp.2012.10.020
Dular, M., & Osterman, A. (2008). Pit clustering in cavitation erosion. Wear, 265(5-6), 811-820. https://doi.org/10.1016/j.wear.2008.01.005
Dular, M., Bachert, B., Stoffel, B., & Širok, B. (2004). Relationship between cavitation structures and cavitation damage. Wear, 257(11), 1176-1184. https://doi.org/10.1016/j.wear.2004.08.004
Dular, M., Stoffel, B., & Širok, B. (2006). Development of a cavitation erosion model. Wear, 261(5-6), 642-655. https://doi.org/10.1016/j.wear.2006.01.020
El Adraoui, I., Gziri, H., & Mousrij, A. (2021). Prognosis of a Degradable Hydraulic System. International Journal Of Prognostics And Health Management, 11(2). https://doi.org/10.36001/ijphm.2020.v11i2.2926
Emmons, F. (2017). Systems and Methods for Assessing The Health of a First Apparatus by Monitoring a Dependent Second Apparatus. (EP3276439B1). EPO. Retrieved from https://patents.google.com/patent/EP3276439B1/en?q=Gas+Turbine+Engine+Fuel+System+Prognostic+System+Emmons&oq=Gas+Turbine+Engine+Fuel+System+Prognostic+System+Emmonstic+System+Emmons
Emmons, F., & Salminen, D. (2019). Gas Turbine Engine Fuel System Prognostic System. (US20190234309A1). USPTO. Retrieved from https://patents.google.com/patent/US20190234309A1/en?q=Gas+Turbine+Engine+Fuel+System+Prognostic+System+Emmons&oq=Gas+Turbine+Engine+Fuel+System+Prognostic+System+Emmons
Ezhilarasu, C., Skaf, Z., & Jennions, I. (2019). The application of reasoning to aerospace Integrated Vehicle Health Management (IVHM): Challenges and opportunities. Progress In Aerospace Sciences, 105, 60-73. https://doi.org/10.1016/j.paerosci.2019.01.001
Fan, H., & Piao, Y. (2017). Cooling design of an aero-engine fuel centrifugal pump at shut-off. Advances In Mechanical Engineering, 9(6), 1-12. https://doi.org/10.1177/1687814017709700
Fang, J., Li, W., Li, H., & Xu, X. (2015). Online Inverter Fault Diagnosis of Buck-Converter BLDC Motor Combinations. IEEE Transactions on Power Electronics, 30(5), 2674-2688. https://doi.org/10.1109/tpel.2014.2330420
Feng, K., Borghesani, P., Smith, W., Randall, R., Chin, Z., Ren, J., & Peng, Z. (2019). Vibration-based updating of wear prediction for spur gears. Wear, 426-427, 1410-1415. https://doi.org/10.1016/j.wear.2019.01.017
Flint, P. (2007). Engine Fuel System Health Monitoring. (EP1801391A2). EPO. Retrieved from https://patents.google.com/patent/EP1801391A2/en?oq=EP1801391A2
Garcı́a Márquez, F., Schmid, F., & Collado, J. (2003). Wear assessment employing remote condition monitoring: a case study. Wear, 255(7-12), 1209-1220. https://doi.org/10.1016/s0043-1648(03)00214-x
Griffiths, M. (2005). Pump Health Monitoring. (EP1522731A2). EPO. Retrieved from https://patents.google.com/patent/EP1522731A2/en?oq=EP1522731A2
Guo, S., Chen, J., Lu, Y., Wang, Y., & Dong, H. (2020). Hydraulic Piston Pump in Civil Aircraft: Current Status, Future Directions and Critical Technologies. Chinese Journal of Aeronautics, 33(1), 16-30. https://doi.org/10.1016/j.cja.2019.01.013
Haus, S., Mikat, H., Nowara, M., Kandukuri, S., Klingauf, U., & Buderath, M. (2020). Fault Detection based on MCSA for a 400Hz Asynchronous Motor for Airborne Applications. International Journal of Prognostics and Health Management, 4(2), 1-19. https://doi.org/10.36001/ijphm.2013.v4i2.2123
Haylock, J., Mecrow, B., Jack, A., & Atkinson, D. (1999). Operation of fault tolerant machines with winding failures. IEEE Transactions on Energy Conversion, 14(4), 1490-1495. https://doi.org/10.1109/60.815095
Haynes, H., & Eissenberg, D. (1989). Motor Current Signature Analysis Method for Diagnosing Motor Operated Devices. (US4965513A). USPTO. Retrieved from https://patents.google.com/patent/US4965513A/en?oq=US4965513A
Hoffmann, W. (1981). Some Experience with Ferrography in Monitoring the Condition of Aircraft Engines. Wear, 65(3), 307-313. https://doi.org/10.1016/0043-1648(81)90058-2
Homa, D., & Wróblewski, W. (2014). Modelling of Flow with Cavitation in Centrifugal Pump. Journal Of Physics: Conference Series, 530, 1-8. https://doi.org/10.1088/1742-6596/530/1/012032
Hughes, A., & Drury, B. (2019). Electric Motors and Drives: Fundamentals, Types and Applications. Oxford: Elsevier
Jahangir, S., Ghahramani, E., Neuhauser, M., Bourgeois, S., Bensow, R., & Poelma, C. (2021). Experimental investigation of cavitation-induced erosion around a surface-mounted bluff body. Wear, 480-481. https://doi.org/10.1016/j.wear.2021.203917
Jiao, X., Jing, B., Huang, Y., Li, J., & Xu, G. (2017). Research on fault diagnosis of airborne fuel pump based on EMD and probabilistic neural networks. Microelectronics Reliability, 75, 296-308. https://doi.org/10.1016/j.microrel.2017.03.007
Johnston, D., & Edge, K. A. (1991). A Test Method for Measurement of Pump Fluid-Borne Noise Characteristics. Journal of Commercial Vehicles, II, 148-157.
Johnston, N., & Todd, C. (2010). Condition Monitoring of Aircraft Fuel Pumps Using Pressure Ripple Measurements. Fluid Power ad Motirion Control, 161-174.
Jung, M., Niculita, O., & Skaf, Z. (2018). Comparison of Different Classification Algorithms for Fault Detection and Fault Isolation in Complex Systems. Procedia Manufacturing, 19, 111-118. https://doi.org/10.1016/j.promfg.2018.01.016
Kahlert, A. (2017). Specification and Evaluation of Prediction Concepts in Aircraft Maintenance. University and State Library Darmstadt, (pp. 1-37). Darmstadt.

Kang, R., Gong, W., & Chen, Y. (2020). Model-driven degradation modeling approaches: Investigation and review. Chinese Journal Of Aeronautics, 33(4), 1137-1153. https://doi.org/10.1016/j.cja.2019.12.006
Kaufhold, M., Aninger, H., Berth, M., Speck, J., & Eberhardt, M. (2000). Electrical stress and failure mechanism of the winding insulation in PWM-inverter-fed low-voltage induction motors. IEEE Transactions On Industrial Electronics, 47(2), 396-402. https://doi.org/10.1109/41.836355
Kliman, G., & Stein, J. (1992). Methods of Motor Current Signature Analysis. Electric Machines & Power Systems, 20(5), 463-474. https://doi.org/10.1080/07313569208909609
Lacey, P. (1993). Wear with low-lubricity fuels I. Development of a wear mapping technique. Wear, 160(2), 325-332. https://doi.org/10.1016/0043-1648(93)90437-q
Lam, J., & Woods, R. (2018). Ice accretion and release in fuel systems. The Aeronautical Journal, 122(1253), 1051-1082. https://doi.org/10.1017/aer.2018.50
Langton, R., Clark, C., Hewitt, M., & Richards, L. (2009). Aircraft Fuel Systems. Chichester: John Wiley & Sons.
Lawson, C., Baena, S., & Lam, J. (2012). Cold Fuel Test Rig to Investigate Ice Accretion on Different Pump Inlet Filter-Mesh Screens. 28th International Congress of the Aeronautical Sciences.
Li, C., & Jiao, Z. (2006). Thermal-hydraulic Modeling and Simulation of Piston Pump. Chinese Journal Of Aeronautics, 19(4), 354-358. https://doi.org/10.1016/s1000-9361(11)60340-3
Li, D., Zhang, Z., Zhong, Q., & Zhai, Y. (2014). Performance Deterioration Modeling and Optimal Preventive Maintenance Strategy Under Scheduled Servicing Subject to Mission Time. Chinese Journal of Aeronautics, 27(4), 821-828. https://doi.org/10.1016/j.cja.2014.06.002
Li, J., Jing, B., Dai, H., Jaio, X., & Liu, X. (2018). Remaining useful life prediction based on variation coefficient consistency test of a Wiener process. Chinese Journal of Aeronautics, 31(1), 107-116. https://doi.org/10.1016/j.cja.2017.11.001
Li, T., Wang, S., Shi, J., & Ma, Z. (2018). An adaptive-order particle filter for remaining useful life prediction of aviation piston pumps. Chinese Journal of Aeronautics, 31(5), 941-948. https://doi.org/10.1016/j.cja.2017.09.002
Liu, Y., & Wang, R. (2021). Fault diagnosis of power transistors in a power converter of SRM drive based on a state inverse solution. IET Electric Power Applications, 15(2), 231-242. https://doi.org/10.1049/elp2.12018
Lu, C., Wang, S., & Wang, X. (2017). A multi-source information fusion fault diagnosis for aviation hydraulic pump based on the new evidence similarity distance. Aerospace Science and Technology, 71, 392-401. https://doi.org/10.1016/j.ast.2017.09.040
Lu, Y., & Kumar, A. (2012). System and Method for Predicting Mechanical Failure of a Motor. (US9845012B2). USPTO. Retrieved from https://patents.google.com/patent/US9845012B2/en?oq=US9845012B2
M. Hussain, Y., Burrow, S., Henson, L., & Keogh, P. (2020). A High Fidelity Model Based Approach to Identify Dynamic Friction in Electromechanical Actuator Ballscrews using Motor Current. International Journal Of Prognostics And Health Management, 9(3), 1-18. https://doi.org/10.36001/ijphm.2018.v9i3.2751
Ma, Z., Wang, S., Shi, J., Li, T., & Wang, X. (2018). Fault diagnosis of an intelligent hydraulic pump based on a nonlinear unknown input observer. Chinese Journal Of Aeronautics, 31(2), 385-394. https://doi.org/10.1016/j.cja.2017.05.004
Mecrow, B., Jack, A., Atkinson, D., Green, S., Atkinson, G., King, A., & Green, B. (2004). Design and Testing of a Four-Phase Fault-Tolerant Permanent-Magnet Machine for an Engine Fuel Pump. IEEE Transactions on Energy Conversion, 19(4), 671-678. https://doi.org/10.1109/tec.2004.832074
Medvitz, R., Kunz, R., Boger, D., Lindau, J., Yocum, A., & Pauley, L. (2002). Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD. Journal Of Fluids Engineering, 124(2), 377-383. https://doi.org/10.1115/1.1457453
Messina, J., Cooper, P., & Heald, C. (2008). Pump Handbook. McGraw-Hill Publishing.
Mkadara, G., & Paulmann, G. (2018). Condition monitoring on hydraulic pumps – lessons learnt. 11th International Fluid Power Conference. Aachen.
Nandi, S., Toliyat, H., & Li, X. (2005). Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review. IEEE Transactions on Energy Conversion, 20(4), 719-729. https://doi.org/10.1109/tec.2005.847955
Neville, A., Hodgkiess, T., & Dallas, J. (1995). A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications. Wear, 186-187, 497-507. https://doi.org/10.1016/0043-1648(95)07145-8
Niculita, O., Jennions, I., & Irving, P. (2013). Design for Diagnostics and Prognostics: A Physical-Functional Approach. 2013 IEEE Aerospace Conference.
Niculita, O., Skaf, Z., & Jennions, I. (2014). The Application of Bayesian Change Point Detection in UAV Fuel Systems. Procedia CIRP, 22, 115-121. https://doi.org/10.1016/j.procir.2014.07.119
Palgrave, R. (2019). Visual Studies of Cavitation in Pumping Machinery. Texas A&M University Library. Texas.
Pandian, G., Pecht, M., Zio, E., & Hodkiewicz, M. (2020). Data-Driven Reliability Analysis of Boeing 787 Dreamliner. Chinese Journal Of Aeronautics, 33(7), 1969-1979. https://doi.org/10.1016/j.cja.2020.02.003
Parsons, D., & Alstrin, K. (2007). Metering Pump with Self-Calibration and Health Prediction. (EP1826408A2). EPO. Retrieved from https://patents.google.com/patent/EP1826408A2/en?oq=EP1826408A2
Pecho, P., & Bugaj, M. (2018). Vibration fault detection of fuel pump using Recurrence Quantification Analysis. Transportation Research Procedia, 35, 287-294. https://doi.org/10.1016/j.trpro.2018.12.009
Qiu, Y., & Khonsari, M. (2012). Thermohydrodynamic Analysis of Spiral Groove Mechanical Face Seal for Liquid Applications. Journal Of Tribology, 134(2), 1-11. https://doi.org/10.1115/1.4006063
Rajagopalan, S., Aller, J., Restrepo, J., Habetler, T., & Harley, R. (2006). Detection of Rotor Faults in Brushless DC Motors Operating Under Nonstationary Conditions. IEEE Transactions on Industry Applications, 42(6), 1464-1477. https://doi.org/10.1109/tia.2006.882613
Riley, C., Lin, B., Habetler, T., & Kliman, G. (1999). Stator current harmonics and their causal vibrations: a preliminary investigation of sensorless vibration monitoring applications. IEEE Transactions On Industry Applications, 35(1), 94-99. https://doi.org/10.1109/28.740850
Schmalz, S., & Schuchmann, R. (2002). Method and Apparatus of Detecting Low Flow/Cavitation in a Centrifugal Pump. (US6709240B1). USPTO. Retrieved from https://patents.google.com/patent/US6709240B1/en
Schumann, J., Kulkarni, C., Lowry, M., Bajwa, A., Teubert, C., & Watkins, J. (2021). Prognostics for Autonomous Electric-Propulsion Aircraft. International Journal of Prognostics And Health Management, 12(3), 1-15. https://doi.org/10.36001/ijphm.2021.v12i3.2940
Shi, C., Wang, S., Wang, X., & Zhang, Y. (2018). Variable load failure mechanism for high-speed load sensing electro-hydrostatic actuator pump of aircraft. Chinese Journal of Aeronautics, 31(5), 949-964. https://doi.org/10.1016/j.cja.2018.01.005
Sinha, J., & Rao, A. (2006). Vibration Based Diagnosis of a Centrifugal Pump. Structural Health Monitoring, 5(4), 325-332. https://doi.org/10.1177/1475921706067760
Skaf, Z. (2015). Prognostics: Design, Implementation and Challenges. Twelfth International Conference on Condition Monitoring, (p. 340). Oxford.
Skaf, Z., Eker, O., & Jennions, I. (2015). A Simple State-Based Prognostic Model for Filter Clogging. Procedia CIRP, 38, 177-182. https://doi.org/10.1016/j.procir.2015.08.094
Soualhi, A., Hawwari, Y., Medjaher, K., Clerc, G., Hubert, R., & Guillet, F. (2020). PHM Survey : Implementation of Signal Processing Methods for Monitoring Bearings and Gearboxes. International Journal of Prognostics and Health Management, 9(2), 1-14. https://doi.org/10.36001/ijphm.2018.v9i2.2736
Sreedhar, B., Albert, S., & Pandit, A. (2017). Cavitation damage: Theory and measurements – A review. Wear, 372-373, 177-196. https://doi.org/10.1016/j.wear.2016.12.009
Tang, X., Zou, M., Wang, F., Li, X., & Shi, X. (2017). Comprehensive Numerical Investigations of Unsteady Internal Flows and Cavitation Characteristics in Double-Suction Centrifugal Pump. Mathematical Problems In Engineering, 2017, 1-13. https://doi.org/10.1155/2017/5013826
Unsworth, P., Discenzo, F., & Babu, V. (2004). Detection of Pump Cavitation/Blockage and Seal Failure via Current Signature Analysis. (US7099852B2). USPTO. Retrieved from https://patents.google.com/patent/US7099852B2/en?q=Unsworth;&inventor=Discenzo&oq=Unsworth;+Discenzo
Villeux, L. (2017). Detection of Pump Cavitation/Blockage and Seal Failure via Current Signature Analysis. (EP3284932B1). USPTO. Retrieved from https://patents.google.com/patent/EP3284932B1/en?oq=EP3284932
Wang, Y., Dong, H., & He, Y. (2019). A novel approach for predicting inlet pressure of aircraft hydraulic pumps under transient conditions. Chinese Journal of Aeronautics, 32(11), 2566-2576. https://doi.org/10.1016/j.cja.2019.03.041
Wen, Z., Hou, J., & Atkin, J. (2017). A review of electrostatic monitoring technology: The state of the art and future research directions. Progress In Aerospace Sciences, 94, 1-11. https://doi.org/10.1016/j.paerosci.2017.07.003
Zhang, C., Chen, R., Bai, G., Wang, S., & Tomovic, M. (2020). Reliability estimation of rotary lip seal in aircraft utility system based on time-varying dependence degradation model and its experimental validation. Chinese Journal of Aeronautics, 33(8), 2230-2241. https://doi.org/10.1016/j.cja.2019.08.018
Zhang, R., Yun, L., & Li, J. (2018). The effect of impeller slot jet on centrifugal pump performance. Journal Of Hydrodynamics, 31(4), 733-739. https://doi.org/10.1007/s42241-018-0161-z
Section
Technical Papers