References
Arias Chao, M., Lilley, D. S., Mathé, P., & Schloßhauer, V. (2015). Calibration and Uncertainty Quantification of Gas Turbine Performance Models. In Proceedings of the asme turbo expo (Vol. 7A, p. V07AT29A001). doi: 10.1115/gt2015-42392
Baraldi, P., Di Maio, F., Turati, P., & Zio, E. (2015). Robust signal reconstruction for condition monitoring of industrial components via a modified auto associative kernel regression method. Mechanical Systems and Signal Processing, 60, 29–44.
Borguet, S. (2012). Variations on the Kalman Filter for Enhanced Performance Monitoring of Gas Turbine Engines (PhD Thesis). Université de Li`ege.
Brunell, B. J., Mathews, J. H. K., & Aditya Kumar. (2004). United States Patent Design of an Adaptive Model-Based Control for Controlling a Gas Turbine
(Vol. 121). DASHlink - Flight Data For Tail 687. (2012). Retrieved 2019-01-29, from https://c3.nasa.gov/dashlink/Doersch, C. (2016, jun). Tutorial on Variational Autoencoders (Tech. Rep.). Retrieved from http://arxiv.org/abs/1606.05908
Dourado, A., & Viana, F. A. C. (2019, sep). Physics- Informed Neural Networks for Corrosion-Fatigue Prognosis. Proceedings of the Annual Conference
of the PHM Society, 11(1). doi: 10.36001/PHMCONF. 2019.V11I1.814
Frank, S., Heaney, M., Jin, X., Robertson, J., Cheung, H., Elmore, R., & Henze, G. P. (2016). Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings. Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Aug 21-26, 12.1–12.14.
Frederick, D. K., Decastro, J. A., & Litt, J. S. (2007). User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (Tech. Rep.). Retrieved from http://www.sti.nasa.gov
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks (Tech. Rep.). Retrieved from http://www.iro.umontreal.
Hanachi, H., Yu, W., Kim, I. Y., & Mechefske, C. K. (2017). Hybrid Physics-Based and Data-Driven PHM. Canadian Machinery Vibration Association (CMVA) Annual Conference, Edmonton, Alberta, Canada.
Hu, Y., Palmé, T., & Fink, O. (2017). Fault detection based on signal reconstruction with auto-associative extreme learning machines. Engineering Applications of Artificial Intelligence, 57, 105–117.
Jia, X., Karpatne, A., Willard, J., Steinbach, M., Read, J., Hanson, P. C., . . . Kumar, V. (2018, oct). Physics Guided Recurrent Neural Networks
For Modeling Dynamical Systems: Application to Monitoring Water Temperature And Quality In Lakes (Tech. Rep.). Retrieved from http://arxiv.org/abs/1810.02880
Julier, S. J., & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear systems. In Signal processing, sensor fusion, and target recognition vi (Vol. 3068, p. 182). doi: 10.1117/12.280797
Khan, S., & Yairi, T. (2018, jul). A review on the application of deep learning in system health management (Vol. 107). Academic Press. doi:
10.1016/j.ymssp.2017.11.024
Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In 3rd international conference on learning representations, iclr 2015 - conference track proceedings.
Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In 2nd international conference on learning representations, iclr 2014 - conference track proceedings.
LeCun, Y. A., Bottou, L., Orr, G. B., & M¨uller, K. R. (2012). Efficient backprop. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7700 LECTU, 9–48. doi: 10.1007/978-3-642-35289-8-3
Michau, G., Hu, Y., Palmé, T., & Fink, O. (2017). Feature Learning for Fault Detection in High-Dimensional Condition-Monitoring Signals. Submitted for a possible publication in IEEE Transactions on Cybenetics.
Michau, G., Palmé, T., & Fink, O. (2017). Deep feature learning network for fault detection and isolation. In Phm 2017, st. petersburg, usa, 2-5 october 2017 (pp. 108–118).
Moya, M. M., & Hush, D. R. (1996). Network constraints and multi-objective optimization for one-class classification. Neural Networks, 9(3), 463–474. doi: 10.1016/0893-6080(95)00120-4
Nascimento, R. G., & Viana, F. A. (2019). Fleet prognosis with physics-informed recurrent neural networks. In Structural health monitoring 2019: Enabling intelligent life-cycle health management for industry internet of things (iiot) - proceedings of the 12th international workshop on structural health monitoring (Vol. 2, pp.1740–1747).
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Rausch, R. T., Goebel, K. F., Eklund, N. H., & Brunell, B. J. (2005). Integrated In-Flight Fault Detection and Accommodation: A Model-Based Study. In Volume 1: Turbo expo 2005 (pp. 561–569). ASME. doi: 10.1115/GT2005-68300
Sarkar, D., Bali, R., & Ghosh, T. (2018). Hands-on transfer learning with Python : implement advanced deep learning and neural network models using TensorFlow and Keras.
Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., & Boult, T. E. (2013). Toward Open Set Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(7), 1757–1772. doi: 10.1109/TPAMI.2012.256
Sch¨olkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., & Piatt, J. (2000). Support vector method for novelty detection. In Advances in neural information processing systems (pp. 582–588).
Wang, Q., Michau, G., & Fink, O. (2019). Domain adaptive transfer learning for fault diagnosis. arXiv preprint arXiv:1905.06004.
Wang, S., Minku, L. L., & Yao, X. (2013). Online class imbalance learning and its applications in fault detection. International Journal of Computational Intelligence and Applications, 12(04), 1340001.
Xu, L., Chow, M.-Y., & Taylor, L. S. (2007). Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm. IEEE Transactions on Power Systems, 22(1), 164–171.
Yucesan, Y. A., & Viana, F. A. C. (2019). Wind Turbine Main Bearing Fatigue Life Estimation with Physicsinformed Neural Networks. In Phm 2019 (Vol. 11, pp. 1–14). doi: 10.36001/PHMCONF.2019.V11I1.807
Zhang, Y., Li, X., Gao, L., Wang, L., & Wen, L. (2018). Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning. Journal of manufacturing systems, 48, 34–50.
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2016, dec). Deep Learning and Its Applications to Machine Health Monitoring:
A Survey (Tech. Rep.). Retrieved from http://arxiv.org/abs/1612.07640
Zhao, S., Song, J., & Ermon, S. (2019, jul). InfoVAE: Balancing Learning and Inference in Variational Autoencoders. In Proceedings of the aaai conference on artificial intelligence (Vol. 33, pp. 5885–5892). doi: 10.1609/aaai.v33i01.33015885
Zhu, W., Miao, J., Qing, L., & Huang, G.-B. (2015). Hierarchical Extreme Learning Machine for unsupervised representation learning. In 2015 international joint conference on neural networks (ijcnn) (pp. 1–8). IEEE. doi: 10.1109/IJCNN.2015.7280669