Condition Monitoring Technologies for Synthetic Fiber Ropes - a Review



Published Nov 16, 2020
Espen Oland Rune Schlanbusch Shaun Falconer


This paper presents a review of different condition monitoring technologies for fiber ropes. Specifically, it presents an overview of the articles and patents on the subject, ranging from the early 70’s up until today with the state of the art. Experimental results are also included and discussed in a conditionmonitoring context,where failuremechanisms and changes in physical parameters give improved insight into the degradation process of fiber ropes. From this review, it is found that automatic width measurement has received surprisingly little attention, and might be a future direction for the development of a continuous condition monitoring system for synthetic fiber ropes.

Abstract 413 | PDF Downloads 418



condition based maintenance (CBM), damage detection, health monitoring, optical damage sensors, ultrasound, thermography, vibration analysis, computer vision, electromagnetic method, X-ray tomography

Annis, P. A. (2005). Surface wear analysis of fabrics. ASTM Standardization News.
Barton Smith, D., &Williams, J. (2002). Directmeasurement of large strains in synthetic fiber mooring ropes using polymeric optical fibers. In Proceedings of the offshore technology conference. Houston, Texas, USA.
Bashir, I., Walsh, J., Thies, P. R., Weller, S. D., Blondel, P., & Johanning, L. (2017). Underwater acoustic emission monitoring - experimental investigation and acoustic signature recognition of synthetic mooring ropes. Applied Acoustics, 121, 95-103.
Bosman, R. L. M. (1996). On the origin of heat build-up in polyester ropes. In Proceedings of OCEANS. FL, USA.
Bryden, W. A., & Poehler, T. O. (1985). Non-destructive testing of nylon ropes using magnetic resonance techniques. In Proceedings of the 11th world conference on non-destructive testing. Columbus, Ohio, USA.
Bryden, W. A., & Poehler, T. O. (1986). NDT of nylon ropes using magnetic resonance techniques. Review of Progress in Quantitative Non-Destructive Evaluation, 5A, 1393-1396.
Bryden, W. A., & Poehler, T. O. (1987). EPR imaging investigation of damage in polymeric solids. Review of Progress in Quantitative Nondestructive Evaluation, 7A, 295-298.
Cortázar, O. D., Lorrondo, H. A., Laura, P. A. A., & Avalos, D. R. (1996). A low-cost fiber optic system for monitoring the state of structural health of a mechanical cable. Ocean Engineering, 23(2), 193-199.
Cortázar, O. D., Tomasel, F. G., & Laura, P. A. A. (1998). Monitoring the structural health of kevlar cables by means of fiber-optic technology. Journal of Sound and Vibration, 214(3), 576–579.
Cortland Company. (2016). Plasma 12 strand tech sheet. (accessed 10th of August 2016).
D’Agostino,W. L., Barrick,M. D., &Williams, G. R. (1993). Device, system and process for detecting tensile loads on a rope having an optical fiber incorporated therein. Patent US 5182779 A, USA.
Davies, P., Franc¸ois, M., Lacotte, N., Vu, T. D., & Durville, D. (2015). An empirical model to predict the lifetime of braided HMPE handling ropes under cyclic bend over sheave (CBOS) loading. Ocean Engineering, 97, 74–81.
Davies, P., Lacotte, N., Kibsgaard, G., Craig, R., Cannell, D., Francois, S., . . . Sherman, D. (2013). Bend over sheave durability of fibre ropes for deep sea handling operations. In Proceedings of the ASME 2013 32nd international conference on ocean, offshore and arctic engineering. Nantes, France.
De Angelis, C. (1998). Equipment for determining when synthetic fiber cables are ready to be replaced. Patent US 5834942 A, USA.
De Angelis, C. (1999). Apparatus for identification of need to replace synthetic ropes. Patent US 6247359 B1, USA.
De Angelis, C. (2002). Synthetic fiber cable with temperature sensor. Patent US 6392551 B2, USA.
DeNale, R. (1985). Solid mechanics research for quantitative non-destructive evaluation. In Proceedings of the ONR symposium on solid mechanics research for QNDE. Northwestern University, Evanston, IL, USA.
DNV-GL. (2005). Damage assessment of fibre ropes for off- shore mooring. DNV-RP-E304.
DNV-GL. (2013a). Manufacturers of offshore fibre yarns. Approval of Manufacturers No. 322.
DNV-GL. (2013b). Offshore fibre ropes. DNV-OS-E303.
DNV-GL. (2015). Design, testing and analysis of offshore fibre ropes. DNVGL-RP-E305.
Egan, D. M. (1972). An acoustic emission study of the fracture mechanism of synthetic rope - an adventure in rheology. In Academy scholars report. U. S. Coast Guard Academy, New London, Connecticut, USA.
Ferreira, M., Lam, T. M., Koncar, V., & Delvael, Y. (2000). Nondestructive testing of polyaramide cables by longitudinal wave propagation: study of the dynamic modulus. Polymer Engineering and Science, 40(7), 1628-1634.
Flory, J. F., McKenna, H. A., & Parsey, M. R. (1982). Fiber ropes for ocean engineering in the 21st century. In Proceedings of the civil engineering in the oceans. American Society of Civil Engineers, San Diego, CA, USA.
Fresch, D. C., Yeager, L. L., & Thiruvengadam,A. P. (1979). Engineering feasibility of internal friction damping as a nondestructive evaluation technique for synthetic ropes. Report CG-D-51-79, Springlake Research Center.
Grabandt, O., Van Berkel, B., Oosterhuis, F., Mathew, T., & Akker, P. G. (2015). Method for non-destructive testing of synthetic ropes and rope suitable for use therein. Patent US 20150225894 A1, USA.
Herduin, M., Banfield, S., Weller, S. D., Thies, P. R., & Johanning, L. (2016). Abrasion process between a fibre mooring line and a corroded steel element during the transit and commissioning of a marine renewable energy device. Engineering Failure Analysis, 60, 137–154.
Huntley, E. W., Grabandt, O., & Gra¨etan, R. (2015). Nondestructive test methods for high-performance synthetic rope. In Proceedings of the 5th international OIPEEC conference. Stuttgart, Germany.
Huntley, E. W., Huntley, M. B., & Whitehill, A. S. (2015). Synthetic rope, fiber optic cable and method for non- destructive testing thereof. Patent US 9075022 B2, USA.
Ilaka, M., & Zerza, H. (2014). Apparatus for recognizing the discard state of a high-strength fiber rope in use in lifting gear. Patent US 2014/0027401 A1, USA.
Irving, P. E., & Thiagarajan, C. (1998). Fatigue damage characterization in carbon fibre composite materials using an electrical potential technique. Smart Materials and Structures, 7(4), 456-466.
Javidinejad, A., & Joshi, S. (1999). Design and structural testing of smart composite structures with embedded conductive thermoplastic film. Smart Materials and Structures, 8, 585–590.
Kenney, M., Mandell, J., & McGarry, F. (1985). The effects of sea water and concentrated salt solutions on the fatigue of nylon 6,6 fibres. Journal of Materials Science, 20(6), 2060–2070.
Kwun, H., & Burkhardt, G. L. (1989). Nondestructive testing of ropes using the transverse impulse vibration method. Review of Progress in Quantitative Nonde- structive Evaluation, 8, 1053-1060.
Kwun, H., & Burkhardt, G. L. (1990). Non-destructive eval-uation of ropes by using transverse impulse vibrational wave method. Patent US 4979125, USA.
Kwun, H., & Burkhardt, G. L. (1991). Relationship between reflected signal amplitude and defect size in rope inspection using a transverse-impulse vibrational wave. NDT & E International, 24(6), 317-319.
Laura, P. A. A. (2003). Monitoring the structural condition of cables: experimental methods. Mechanics, 32(1-2), 10-20.
Laura, P. A. A., Ercoli, L., & Malfa, S. L. (1995). Feasibility of detection of cable failure using infrared technology. Ocean Engineering, 22(6), 545-549.
Lechat, C., Bunsell, A. R., Davies, P., & Burgoyne, C. J. (2008). Characterisation of long term behaviour of polyester fibres and fibre assemblies for offshoremooring lines. In Proceedings of oilfield engineering with polymers. Cavendish Conference Centre London, UK.
Logan, D. E., Favrow, L. H., Haas, R. J., Stucky, P. A., & Baldwin, N. R. (2006). Load bearing member for use in an elevator system having external markings for indicating a condition of the assembly. Patent US 7117981 B2, USA.
Ludden, B. P., Carroll, J. E., & Burgoyne, C. J. (1995). A distributed optical fibre sensor for offshore applications. In Proceedings of the IEE electronics division colloquium on opticaltechniques for structural monitoring. London,UK.
McKenna, H. A., Hearle, J. W. S., & O’Hear, N. (2004). Handbook of fibre rope technology. Woodhead publishing, ISBN: 978-1-85573-606-1.
O’Hear, N. (2003). Optical scanning apparatus for ropes nondestructive test monitoring system. In Proceedings of OCEANS. San Diego, CA, USA.
Oland, E., & Schlanbusch, R. (2016). A review of condition monitoring techniques for fiber ropes. In Proceedings of the joint conference: Machinery failure prevention technology (MFPT) and ISAs 62nd international instrumentation symposium. Dayton, USA.
Overington, M. S., & Leech, C. M. (1997). Modelling heat buildup in large polyester ropes. International Journal of Offshore and Polar Engineering, 7(1).
Padilla, L. S., Bull, P., Royer, R. L., & Owens, S. E. (2015). Non-contact acoustic signal propagation property evaluation of synthetic fiber rope. Patent US 8,958,994 B2.
Ractliffe, A. T. (1982). Synthetic fibre rope: monitoring strain using optical fibre. Patent GB 2130611 A, UK.
Rebel, G., Chaplin, C. R., Groves-Kirkby, C., & Ridge, I. M. L. (2000). Condition monitoring techniques for fibre mooring ropes. Insight: Non-Destructive Testing and Condition Monitoring, 42(6), 384–390.
Robar, T. M., Veronesi, W. A., Stucky, P. A., & Gieras, J. F. (2006). Method and apparatus for detecting elevator rope degradation using electrical resistance. Patent US 7123030 B2, USA.
Robertson, P. A., & Ludden, B. P. (1997). A fibre optic distributed sensor system for condition monitoring of synthetic ropes. In Proceedings of the IEE colloquium on optical techniques for smart structures and structural monitoring. London, UK.
Samson Rope Technologies. (2012). Understanding creep. Samson Technical Bulletin. Samson Rope Technologies. (2014). Rope user’s manual - guide to rope selection, handling, inspection and retirement. Presentation.
Schecklman, S., Kniffin, G. P., & Zurk, L. M. (2014). Terahertz non-destructive evaluation of textile ropes and slings. In Proceedings of the 2014 international symposium on optomechatronic technologies. Washington DC, USA.
Schmieder, A., Heinze, T., & Michael, M. (2015). Failure analysis of high-strength fiber ropes. Materials Science Forum, 825-826, 891-898.
Schmieder, A., Heinze, T., &Michael,M. (2016). Computerassisted tomography analysis of high-strength fiber ropes. In Proceedings of the 6th conference on industrial computed tomography. Wels, Austria.
Smith, R., Nickerson, J., Palazzola, M. A., & Pawrrish, R. (2005). Apparatus for testing aramid fiber elevator cables. Patent US 6923065 B2, USA.
Thévanaz, L., Nikl`es, M., Fellay, A., Facchini, M., & Robert, P. (1998). Applications of distributed brillouin fibre sensing. In Proceedings of the international conference on applied optical metrology. Balatonf ¨ured, Hungary.
Toda, M., Grabowska, K. E., & Ciesielska-Wrobel, I. L. (2016). Micro-CT supporting structural analysis and modelling of ropes made of natural fibers. Textile Re- search Journal, 86(12), 1280–1293.
T¨ornqvist, R., Strande, M., Cannell, D., Gledhill, P., Smeets, P., & Gilmore, J. (2011). SS: Deployment of subsea equipment: Qualification of large diameter fibre rope for deepwater construction applications. In Proceedings of the offshore technology conference. Houston, USA.
Uttamchandani, D., Culshaw, B., Overington, M. S., Parsey, M., Facchini, M., & Thévanaz, L. (1999). Distributed optical fibre sensing in synthetic fibre ropes and cables. In Proceedings of the 13th international conference on optical fiber sensors. Kyongju, Korea.
Van Der Woude, F., & Zijlmans, J. (2015). Real-time rope monitoring. Patent WO 2015160254 A1.
Vanderveldt, H. H., & Tran, O. (1971). Acoustic emission from synthetic rope. Naval Engineers Journal, 83(6), 65–68.
Vlasblom, M. P., & Bosman, R. L. M. (2006). Predicting the creep lifetime of HMPE mooring rope applications. In Proceedings of OCEANS. Boston, Massachusetts, USA.
Wang, X., & Chung, D. D. L. (1997). Real-time monitoring of fatigue damage and dynamic strain in carbon fiber polymer-matrix composite by electrical resistance measurement. Smart Materials and Structures, 6(4), 504–508.
Weller, S. D., Davies, P., Johanning, L., & Banfield, S. (2013). Guidance on the use of synthetic fibre ropes for marine energy devices. Report from the MERiFIC Project, RDT CSM 13-232.
Weller, S. D., Davies, P., Vickers, A. W., & Johanning, L. (2015). Synthetic rope responses in the context of load history: The influence of aging. Ocean Engineering, 96, 192–204.
Weller, S. D., Johanning, L., Davies, P., & Banfield, S. J. (2015). Synthetic mooring ropes for marine renewable energy applications. Renewable Energy, 83, 1268-1278.
Williams, J. H., Hainsworth, J. L., & Lee, S. (1984). Acoustic-ultrasonic nondestructive evaluation of double-braided nylon ropes using the stress wave factor. Fibre Science And Technology, 21, 169–180.
Williams, J. H., & Lee, S. (1982). Acoustic emission/rupture load characterizations of double-braided nylon rope. Marine Technology, 19(3), 268–271.
Winter, J. M., & Green, R. E. (1985). Nondestructive evaluation of synthetic nylon rope using mechanical spectroscopy. In Proceedings of the 11th world conference on nondestructive testing. Las Vegas, Nevada, USA.
Yeager, L. L., Hochrein, A. A., & Sherrard, J. R. (1982). Application of internal friction damping as a nondestructive evaluation technique for synthetic ropes used as spm hawsers in deepwater ports. In Proceedings of the offshore technology conference. Houston, Texas, USA.
Technical Papers