Feature Selection for Monitoring Erosive Cavitation on a Hydroturbine

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 16, 2020
Seth W. Gregg John P.H. Steele Douglas L. Van Bossuyt

Abstract

This paper presents a method for comparing and evaluating cavitation detection features - the first step towards estimating remaining useful life (RUL) of hydroturbine runners that are
impacted by erosive cavitation. The method can be used to quickly compare features created from cavitation survey data collected on any type of hydroturbine, sensor type, sensor location, and cavitation sensitivity parameter (CSP). Although manual evaluation and knowledge of hydroturbine cavitation is still required for our feature selection method, the use of principal component analysis greatly reduces the number of plots that require evaluation. We present a case study based on a cavitation survey data collected on a Francis hydroturbine located at a hydroelectric plant and demonstrate the selection of the most advantageous sensor type, sensor location, and CSP to use on this hydroturbine for long-term monitoring of erosive cavitation. Our method provides hydroturbine operators and researchers with a clear and effective means to determine preferred sensors, sensor placements, and CSPs while also laying the groundwork for determining RUL in the future.

Abstract 19 | PDF Downloads 9

##plugins.themes.bootstrap3.article.details##

Keywords

monitoring, Hydroturbine, Hydro Power, Cavitation, Cavitation Monitoring

References
Al-Kandari, N. M., & Jolliffe, I. T. (2005). Variable selection and interpretation in correlation principal components. Environmetrics, 16(6), 659–672. doi: 10.1002/env.728
An, D., Kim, N. H., & Choi, J.-H. (2013). Options for Prognostics Methods : A review of data-driven and physics- based prognostics. Annual Conference of the Prognostics and Health Management Society, 1–14. doi: 10.2514/6.2013-1940
Avellan, F. (2004). Introduction to cavitation in hydraulic machinery. The International Conference on Hydraulic Machinery . . . , 11–22. Retrieved from http://mmut.mec.upt.ro/mh/Conferinta{\ }MH/102Avellan.pdf
Bajic, B. (2002). Multidimensional Diagnostics of Turbine Cavitation. Journal of Fluids Engineering, 124(4), 943. doi: 10.1115/1.1511162
Bajic, B. (2008). Multidimensional Methods and Simple Methods for Cavitation Diagnostics and Monitoring (Tech. Rep.). Brasilia.
Bajic, B., Services, K. C., Gmbh, K., & Zithe, S. (2003). Methods for vibro-acoustic diagnostics of turbine cavitation M´ethodes pour le diagnostic vibro-acoustique de la cavitation de turbine. Analysis, 41(1), 87–96.
Baydar, N., Chen, Q., Ball, A., & Kruger, U. (2001). Detection of Incipient Tooth Defect in Helical Gears Using Multivariate Statistics. Mechanical Systems and Signal Processing, 15(2), 303–321. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0888327000913153 doi: 10.1006/mssp.2000.1315
Benjamin, T. B., & Ellis, A. T. (1966). The Collapse of Cavitation Bubbles and the Pressures thereby Produced against Solid Boundaries. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 260(1110), 221–240. Retrieved from http://rsta.royalsocietypublishing.org/content/260/1110/221.abstract doi: 10.1098/rsta.1966.0046
Berkhin, P. (2006). A survey of clustering data mining techniques. Grouping multidimensional data(c), 25–71. Retrieved from http://link.springer.com/chapter/10.1007/3-540-28349-8{\ }2
Blake, J. (1987). Cavitation Bubbles Near Boundaries. Annual Review of Fluid Mechanics, 19, 99–123. doi: 10.1146/annurev.fluid.19.1.99
Bourdon, P. (2000). Detection Vibratoire De L’Erosion De Cavitation Des Turbines Francis (Unpublished doctoral dissertation). Ecole Polytechnique Federale De Lausanne.
Bourdon, P., Farhat, M., Mossoba, Y., & Lavigne, P. (1999). Hydro Turbine Profitability and Cavitation Erosion. Waterpower’99, 1–10. Retrieved from http://dx.doi.org/10.1061/40440(1999)76$\backslash$nhttp://ascelibrary.org/doi/abs/10.1061/40440(1999)76 doi: 10.1061/40440(1999)76
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate behavioral research, 1(2), 245–276.
Cencˆıc, T., Hocevar, M., & Sirok, B. (2014). Study of Erosive Cavitation Detection in Pump Mode of PumpStorage Hydropower Plant Prototype. ASME J. Fluids Eng., 136(5), 51301. doi: 10.1115/1.4026476
Dorji, U., & Ghomashchi, R. (2014). Hydro turbine failure mechanisms: An overview. Engineering Failure Analysis, 44, 136–147. Retrieved from http://dx.doi.org/10.1016/j.engfailanal.2014.04.013 doi: 10.1016/j.engfailanal.2014.04.013
Dular, M., & Coutier-Delgosha, O. (2009). Numerical modelling of cavitation erosion. International Journal for Numerical Methods in Fluids, 61(12), 1388–1410. doi: 10.1002/fld.2003
Dular, M., & Petkovˇsek, M. (2015). On the mechanisms of cavitation erosion Coupling high speed videos to damage patterns. Experimental Thermal and Fluid Science, 68, 359–370. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0894177715001508 doi:10.1016/j.expthermflusci.2015.06.001
Dular, M., Stoffel, B., & ˇ Sirok, B. (2006). Development of a cavitation erosion model. Wear, 261(5-6), 642–655. doi: 10.1016/j.wear.2006.01.020
Escaler, X., & Egusquiza, E. (2003). Vibration Cavitation Detection Using Onboard Measurements. Symposium A Quarterly Journal In Modern Foreign Literatures(July 2015), 1–7.
Escaler, X., Egusquiza, E., Farhat, M., Avellan, F., & Coussirat, M. (2006). Detection of Cavitation in Hydraulic Turbines. Mechanical Systems and Signal Processing, 983 – 1007.
Escaler, X., Ekanger, J. V., Francke, H. H., Kjeldsen, M., & Nielsen, T. K. (2014). Detection of Draft Tube Surge and Erosive Blade Cavitation in a Full-Scale Francis Turbine. Journal of Fluids Engineering, 137(1), 011103. Retrieved from http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4027541 doi: 10.1115/1.4027541
Faber, M. H. (2012). Statistics and Probability Theory - In Pursuit of Engineering Decision Support. doi: 10.1007/978-94-007-4056-3
Francois, L. (2012). Vibratory detection system of Cavitation Erosion: Historic and Algorithm Validation. In Proceedings of the eighth international symposium on cavitation (pp. 325 –330).
Gavish, M., & Donoho, D. L. (2013). The Optimal Hard Threshold for Singular Values is 4/sqrt(3). , 60(8), 1–14. Retrieved from http://arxiv.org/abs/1305.5870 doi: 10.1109/TIT.2014.2323359
Germann, J., & DeHaan, J. (2013). Cavitation Detection Tests at Judge Francis Carr Powerplant, Redding, California (Tech. Rep.). Denver, Colorado: Bureau of Reclamation Technical Services Center.
Gordon, J. L. (2001). Hydraulic turbine efficiency. Canadian Journal of Civil Engineering, 28(2), 238–253. doi: 10.1139/l00-102
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157–1182.
Hamby, D. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental monitoring and assessment, 32(2), 135–154.
Harrison, M. (1952). An Experimental Study of Single Bubble Cavitation Noise. The Journal of the Acoustical Society of America, 24(6), 776 – 782.
Hasmatuchi, V. (2012). Hydrodynamics of a Pump-Turbine Operating at Off-Design Conditions in Generating Mode (Doctoral dissertation). doi: 10.5075/epfl-thesis-5373
Heng, A., Zhang, S., Tan, A. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing, 23(3), 724–739. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0888327008001489 doi: 10.1016/j.ymssp.2008.06.009
Holick, M. (2013). Introduction to Probability and Statistics for Engineers. doi: 10.1007/978-3-642-38300-7
IHA. (2015). 2015 Key Trends in Hydropower. (Figure 1). Retrieved from http://www.hydropower.org/sites/default/files/publications-docs/IHA2015KeyTrendsinHydropower.pdf
International Electrotechnical Commission. (2004). IEC 60609-1:2004 Hydraulic turbines, storage pumps and pump-turbines - Cavitation pitting evaluation - Part 1: Evaluation in reaction turbines, storage pumps and pump-turbines. International Electrotechnical Commission. Retrieved from https:// webstore.iec.ch/publication/2718
Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0888327005001512 doi: 10.1016/j.ymssp.2005.09.012
Jian, W., Petkovˇsek, M., Houlin, L., ˇ Sirok, B., & Dular, M. (2015). Combined Numerical and Experimental Investigation of the Cavitation Erosion Process. Journal of Fluids Engineering, 137(5), 051302. Retrieved from http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4029533 doi: 10.1115/1.4029533
Jolliffe, I. T. (1982). A note on the use of principal components in regression. Applied Statistics, 300–303.
Jolliffe, I. T. (2002). Principal Component Analysis, Second Edition. Encyclopedia of Statistics in Behavioral Science, 30(3), 487. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/0470013192.bsa501/full doi:10.2307/1270093
Kan, M. S., Tan, A. C., & Mathew, J. (2015). A review on prognostic techniques for non-stationary and non-linear rotating systems. Mechanical Systems and Signal Processing, 62-63, 1–20. Retrieved from http://www.sciencedirect.com/science/article/pii/S0888327015000898 doi: 10.1016/j.ymssp.2015.02.016
Keogh, E., & Kasetty, S. (2002). On the need for time series data mining benchmarks. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’02, 102. Retrieved from http://dl.acm.org/citation.cfm?id=775047.775062 doi:10.1145/775047.775062
Khelf, I., Laouar, L., Bouchelaghem, A. M., R´emond, D., & Saad, S. (2013). Adaptive fault diagnosis in rotating machines using indicators selection. Mechanical Systems and Signal Processing, 40(2), 452–468. Retrieved from http://dx.doi.org/10.1016/j.ymssp.2013.05.025 doi: 10.1016/j.ymssp.2013.05.025
Kim, K., Uluyol, O., Parthasarathy, G., & Mylaraswamy, D. (2012). Fault Diagnosis of Gas Turbine Engine LRUs Using the Startup Characteristics. Phm, 1–10. The Knowledge Stream - Detecting Cavitation to Protect and Maintain Hydraulic Turbines. (2014). (Summer 2014). Retrieved from https://www.usbr.gov/research/docs/updates/2014-14-cavitation.pdf
Kumar, P., & Saini, R. P. (2010). Study of cavitation in hydro turbines-A review. Renewable and Sustainable Energy Reviews, 14(1), 374–383. doi: 10.1016/j.rser.2009.07.024
Malhi, A., & Gao, R. X. (2004). Pca-based feature selection scheme for machine defect classification. IEEE Transactions on Instrumentation and Measurement, 53(6), 1517–1525.
Milligan, G. W., & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5(2), 181–204. doi: 10.1007/BF01897163
Minka, T. P. (2008). Automatic choice of dimensionality for PCA. MIT Media Laboratory Perceptual Computing Section Technical Report No. 514, 2nd revisi.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.
Naude, C. F., & Ellis, A. T. (1961). On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact With a Solid Boundary. Journal of Basic Engineering, 83(4), 648. doi: 10.1115/1.3662286
Pennacchi, P., Borghesani, P., & Chatterton, S. (2015). A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines. Mechanical Systems and Signal Processing, 60-61, 375–390. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0888327015000163 doi: 10.1016/j.ymssp.2014.08.026
Philipp, a., & Lauterborn, W. (1998). Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 361, 75–116. doi: 10.1017/S0022112098008738
Preisendorfer, Rudolph W and Mobley, C. D. (1988). Principal component analysis in meteorology and oceanography. Elsevier Amsterdam.
Ramasso, E., & Saxena, A. (2014). Performance Benchmarking and Analysis of Prognostic Methods for CMAPSS Datasets. International Journal of Prognostics and Health Management(ISSN2153-2648), 1–15.
Randall, R. B. (2010). Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications. doi: 10.1002/9780470977668
Rayleigh, L. (1917). On the Pressure developed in the Liquid during the Collapse of a Spherical Cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(200), 94 – 98. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/14786440808635681?journalCode=tphm17
Rus, T., Dular, M., Sirok, B., Hocevar, M., & Kern, I. (2007). An Investigation of the Relationship Between Acoustic Emission, Vibration, Noise, and Cavitation Structures on a Kaplan Turbine. Journal of Fluids Engineering, 129(September), 1112. doi: 10.1115/1.2754313
Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. (2010). Metrics for Offline Evaluation of Prognostic Performance. International Journal of Prognostics and Health Management(1), 1–20. Retrieved from http://72.27.231.73/sites/phmsociety.org/files/phm{\ }submission/2010/ijPHM{\ }10{\ }001.pdf
Saxena, A., Celaya, J. R., Saha, B., Saha, S., & Goebel, K. (2009). On Applying the Prognostic Performance Metrics. Proceedings of the annual conference of the prognostics and health management society, 1–16.
Schmidt, H., Kirschner, O., Riedelbauch, S., Necker, J., Kopf, E., Rieg, M., . . . Mayrhuber, J. (2014). Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine. IOP Conference Series: Earth and Environmental Science, 22(5), 052006. Retrieved from http://iopscience.iop.org/1755-1315/22/5/052006http://stacks.iop.org/1755-1315/22/i=5/a=052006?key=crossref.7e388f6f614fcf79fa07b58f190a2879 doi: 10.1088/1755-1315/22/5/052006
Shalabi, L. A., Shaaban, Z., & Kasasbeh, B. (2006). Data Mining: A Preprocessing Engine. Journal of Computer Science, 2(9), 735–739. doi:10.3844/jcssp.2006.735.739
Shlens, J. (2014). A Tutorial on Principal Component Analysis. arXiv preprint arXiv:1404.1100, 1–13. doi: 10.1.1.115.3503
Si, X.-S. S., Wang, W., Hu, C.-H. H., & Zhou, D.-H. H. (2011). Remaining useful life estimation - A review on the statistical data driven approaches. European Journal of Operational Research, 213(1), 1–14. Retrieved from http://dx.doi.org/10.1016/j.ejor.2010.11.018http://linkinghub.elsevier.com/retrieve/pii/S0377221710007903 doi:10.1016/j.ejor.2010.11.018
Silberrad. (1912). Propeller erosion. Journal of the Franklin Ins, 174(1), 125.
Tan, D. Y., Miorini, R. L., Keller, J., & Katz, J. (2012). Investigation of Cavitation Phenomena within an Axial Waterjet Pump. In Proceedings of the eighth international symposium on cavitation. doi: 10.3850/978-981-07-2826-7
Thornycroft, J. I., & Barnaby, S. W. (1895). Torpedo-Boat Destroyers. In Minutes of the proceedings of the institution of civil engineers (Vol. 122, pp. 51–69). Thomas Telford-ICE Virtual Library. Retrieved from http://www.icevirtuallibrary.com/doi/abs/10.1680/imotp.1895.19693
U.S. Energy Information Administration. (2015). Electric Power Monthly: with data for May 2015 (Tech. Rep. No. May).
van der Maaten, L., Postma, E., & van den Herik, J. (2009). Dimensionality Reduction : A Comparative Review. October, 1–35.
van Rijsbergen, M., Foeth, E.-J., Fitzsimmons, P., & Boorsma, A. (2012). High-Speed Video Observations and Acoustic-Impact Measurements on a NACA 0015 foil. In International symposium on cavitation (pp. 399–406). doi: 10.3850/978-981-07-2826-7
Varga, JJ and Sebestyen, Gy and Fay, A. (1969). Detection of cavitation by acoustic and vibration-measurement methods. La houille blanche(2), 137–150.
Wang, C. M., & Huang, Y. F. (2009). Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data. Expert Systems with Applications, 36(3 PART 2), 5900–5908. Retrieved from http://dx.doi.org/10.1016/j.eswa.2008.07.026 doi:10.1016/j.eswa.2008.07.026
Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity-based prognostics approach for remaining useful life estimation of engineered systems. In Prognostics and health management, 2008. phm 2008. international conference on (pp. 1–6).
Wolff, P. J., Jones, R. K., & March, P. (2005). Evaluation of Results from Acoustic Emissions-Based Cavitation Monitor , Grand Coulee Unit G-24. (October), 1–15.
Section
Technical Papers