Aging Mechanisms and Monitoring of Cable Polymers

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 3, 2020
Nicola Bowler Shuaishuai Liu

Abstract

Aging mechanisms of two polymeric insulation materials that are used widely in nuclear power plant low-voltage cables; cross-linked polyethylene (XLPE) and ethylene propylene rubber/ethylene propylene diene terpolymer (EPR/EPDM), are reviewed. A summary of various nondestructive methods suitable for evaluation of cable insulation is given. A capacitive sensor capable of making local nondestructive measurements of capacitance and dissipation factor on cable polymers, and potentially suitable for in situ cable monitoring, is introduced.
Correlating values of elongation-at-break, indenter modulus, capacitance and dissipation factor measured on a set of 47 aged flame-resistant EPR samples shows a higher correlation between indenter modulus and dissipation factor than between indenter modulus and elongation-at-break.

Abstract 810 | PDF Downloads 675

##plugins.themes.bootstrap3.article.details##

Keywords

thermal aging, cables, radiation aging, capacitive sensor

References
Analysis and Measurement Services Corporation. (2014). Indenter for cable condition monitoring. Online at: http://www.ams-corp.com/wpcontent/uploads/2012/07/Indenter.pdf .
Anastasi, R. F., & Madaras, E. I. (2005). Application of ultrasonic guided waves for aging wire insulation assessment. Materials Evaluation, 63, 143-147.
Arvia, E., Sheldon, R. T. & Bowler, N. (2014). A capacitive test method for cable insulation degradation assessment, Conference on electrical insulation and dielectric phenomena (514-517), October 19-22, Des Moines, IA.
ASTM International (2013). Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers- Tension, Designation: D412−06a.
Bair, H. E. (1973). Exudation of an antioxidant additive from thin polyethylene films. Polym. Eng. Sci., 1973, 13, 435-439.
Billingham, N. C., Bott, D. C., & Danke, A. S. (1981). Chapter 3. In Developmental Polymer Degradation, p. 63ff.
Board, B. L., & Ruddell, H. J. (1982). Investigation of Premature Depletion of Stabilizers from Solid Polyethylene Insulation. International Wire and Cable Symposium Proceedings (300-312).
Bowler, N., Sheldon, R. T. & Arvia, E. M. (2015). A new test method for cable insulation degradation assessment: capacitive sensing, 9th International conference on nuclear power plant instrumentation, control & human-machine interface technologies (NPIC & HMIT 2015), February 21-26, Charlotte, NC.
British Standard Guide (2001). High-Voltage Test Techniques-Partial Discharge Measurement, Designation: IEC60270.
Celina, M., & George, G. A. (1993). A heterogeneous model for the thermal-oxidation of solid polypropylene from chemiluminescence analysis. Polym. Degrad. Stab, 40, 323-335.
Celina, M., & George, G. A. (1995). Heterogeneous and homogeneous kinetic analyses of the thermal-oxidation of polypropylene. Polym. Degrad. Stab, 50, 89-99.
Celina, M., Gillen, K. T., & Clough, R. L. (1998). Inverse temperature and annealing phenomena during degradation of crosslinked polyolefins. Polym. Degrad. Stab., 50, 231-244.
Chapiro, A. (1962). Radiation Chemistry of Polymeric Systems. New York: Interscience publishers.
Chen, T., & Bowler, N. (2012a). A capacitive probe for quantitative nondestructive evaluation of wiring insulation. NDT&E International, 52, 9-15.
Chen, T., & Bowler, N. (2012b). Analysis of a capacitive sensor for the evaluation of circular cylinders with a conductive core. Meas. Sci. Technol., 23, 10.
Chen, T., Bowler, N., & Bowler, J. R. (2012). Analysis of Arc-Electrode Capacitive Sensors for Characterization of Dielectric Cylindrical Rods. IEEE Trans. Instrumentation and Meas., 61, 233-240.
Chung, Y. C., Amarnath, N. N., & Furse, C. M. (2009). Capacitance and inductance sensor circuits for detecting the lengths of open- and short-circuited wires. IEEE Trans. Instrum. Meas., 58, 2495-2502.
Clough, R. L., & Gillen, K. T. (1981). Combined environment aging effects: radiation-thermal degradation of polyvinylchloride and polyethylene. J. Polym. Sci. Polym. Chem. Ed., 19, 2041.
Clough, R. L., & Gillen, K. T. (1992). Oxygen diffusion effects in thermally aged elastomers. Polym. Degrad. Stab., 38, 47-56.
Clough, R. L., Gillen, K. T., Campan, J. L., Gaussens, G., Schonbacher, H., T., Wilski, H., & Machi, S. (1984). Accelerated aging tests for predicting radiation degradation of organic materials. Nucl. Safety, 25, 238.
Clough, R. L., Gillen, K. T., & Quintana, C. A. (1985). Heterogeneous oxidative degradation in irradiated polymers. J. Polym. Sci. Polym. Chem. Ed., 23, 359- 377.
Conley, R.T. (1970). Thermal Stability of Polymers. New York: Marcel Dekker.
Desai, C., Brown, K., Desmulliez, M., & Sutherland, A. (2008). Selection of wavelet for de-noising PD waveforms for prognostics and diagnostics of aircraft wiring. Conference on electrical insulation and dielectric phenomena (17-20), October 26-29, Quebec, Canada.
Dole, P., & Chauchard, J. (1995). Determination of oxidation profiles of elastomeric materials .2. Correlation of macro (swelling) with micro (pinpoint DMA). Polym. Degrad. Stab., 47, 449-457.
Electric Power Research Institute (EPRI) (1994). Low- Voltage Environmentally-Qualified Cable License Renewal Industry Report; Revision 1. TR-103841.
Electric Power Research Institute (EPRI) (2005). Initial Acceptance Criteria Concepts and Data for Assessing Longevity of Low-Voltage Cable Insulations and Jackets, EPRI Technical Report 1008211, March.
Fothergill, J. C., Dodd, S. J., Dissado, L. A., Liu, T., & Nilsson, U. H. (2011). The measurement of very low conductivity and dielectric loss in XLPE cables: a possible method to detect degradation due to thermal aging. IEEE Trans. Dielectr. Electr. Insulation, 18(5), 1544-1553.
Furse, C., Chung, Y. C., Dangol, R., Nielsen, M., Mabey, G., & Woodward, R. (2003). Frequency domain reectometry for on board testing of aging aircraft wiring. IEEE Trans Electromagn Compat., 45, 306-315.
Furse, C., Chung, Y. C., Lo, C., & Pendayala, P. (2006). A critical comparison of reflectometry methods for location of wiring faults. Smart Struct. Syst., 2, 25-46.
Gillen, K., Assink. R., & Bernstein, R. (2005). Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratories Under the Nuclear Energy Plant Optimization (NEPO) Program.
Gillen, K. T., & Clough, R. L. (1985). A kinetic model for predicting oxidative degradation rates in combined radiation-thermal environments. J. Polym. Sci. Polym. Chem. Ed., 23, 2683.
Gillen, K. T., & Clough, R. L. (1989). Time temperature dose-rate superposition – A methodology for extrapolating accelerated radiation aging data to lowdose rate conditions. Polym. Degrad. Stab., 24, 137-168.
Gillen, K. T., Clough, R. L., & Quintana, C. A. (1987). Modulus profiling of polymers. Polym. Degrad. Stab., 17, 31-47.
Gillen, K. T., Celina, M., Clough, R. L., & Wise, J. (1997). Extrapolation of accelerated aging data - Arrhenius or erroneous? Trends in Polym. Sci., 5, 250-257.
Haruna, T. (2003). Aspects of stabilization with phosphorous antioxidants in polymers. Macromolecuar Mater. Engng., 232(1), 119-131.
Hegazy, E. S., Sasuga. T., Nishii, M., & Seguchi, T. (1992). Irradiation effects on aromatic polymers: 1. Gas evolution by gamma irradiation. Polymer, 33, 2897- 2903. Irradiation effects on aromatic polymers: 2. Gas evolution during electron-beam irradiation. Polymer, 33, 2904-2910.
Howard, J. B. (1973). DTA for control of stability in polyolefin wire and cable compounds. Polym. Eng. Sci., 13, 429-434.
Howard, J. B. & Gilroy, H. M. (1975). Some observations on long-term behavior of stabilized polyethylene. Polym. Eng. Sci., 15, 268-271.
Hosobuchi, M., Komatsu, M., Xie, X., Cheng, Y., Furukawa, Y., Ohki, Y., Mizuno, M., & Fukunaga, K. (2013). Measurements of Thz absorption peaks in photo-degraded polyethylene and their assignment by quantum chemical calculations, Conference on electrical insulation and dielectric phenomena (1046– 1049) October 20-23, Shenzhen, China.
International Atomic Energy Agency (IAEA) (2000). Assessment and management of aging of major nuclear power plant components important to safety: incontainment instrumentation and control cables, vol. 1, December. IAEA-TECDOC-1188.
International Atomic Energy Agency (IAEA) (2012). Assessing and managing cable aging in nuclear power plants. IAEA Nuclear Energy Series, No. NP-T-3.6.
International Electrotechnical Commission (IEC) (1996). Determination of long-term radiation aging in polymers- part 2: procedure for predicting aging at low dose rates. IEC1244-2.
Japanese Standards Association (2000). Test methods for rubber and plastic insulated wires and cables, JIS C 3005:2000, Section 4.16.
Japan Nuclear Energy Safety (JNES) Organization (2009). Final Report of Assessment of Cable Aging for Nuclear Power Plants, July. JNES-SS-0903.
Joichi, K., & Yoshitomo, U. (2003). Radiation resistivity of polymeric materials with data tables. JAERI-Data/Code 2003-015.
Jonscher, A. K. (1983). Dielectric relaxation in solids. London: Chelsea Dielectrics Press.
Kramer, E., & Koppelmann. (1986). Measurement of oxidation stability of polyolefins by thermal-analysis. J., Polym. Degrad. Stab., 16, 261-275.
Kurihara, T., Takahashi, T., Honma, H., & Okamto, T. (2011). Change of tensile strength due to non-uniform thermal deterioration of XLPE sheets. IEEJ, Trans. Fund. Matr., 131, 878-883.
Lutz, J. T. Jr., & Grossman, R. F. (Eds.). (2001). Polymer modifiers and additives. New York: Marcel Dekker. Menczel, J. D. & Prime, R. B. (2009). Thermal analysis of polymers. Wiley.
Meyer, R. A., Bouquet, F. L., & Alger, R. S. (1956). Radiation induced conductivity in polyethylene and Teflon. J. Appl. Phys., 27(9), 1012-1018.
Osawa, Z. (1992). Degradation and Stabilization of Polymers. Musashino Kurieito, Co., Ltd.
Perera, M. C. S., & Hill, D. J. T. (1999). Radiation chemical yields: G values, Polymer handbook, 4th edn. John Wiley & Sons, Inc., II/481-497.
Pires, M., Mauler, R. S. & Liberman, S. A. (2004). Structural characterization of reactor blends of polypropylene and ethylene-propylene rubber. J. Appl. Polymer Sci., 92(4), 2155-2162.
Placek, V. (2005). Assessment of parameters for simulation of thermal aging of materials in nuclear power plants using DSC. J. Thermal Analysis and Calorimetry, 80, 525-528.
Sandia National Laboratories Report (SAND) (1986). Status Report on Equipment Qualification Issues Research and Resolution. NUREG/CR-4301, SAND85-1309.
Sandia National Laboratories Report (SAND) (2010). Review of Nuclear Power Plant Safety Cable Aging Studies with Recommendations for Improved Approaches and for Future Work. SAND 2010-7266.
Seguchi. T., Haruyama. Y., & Sugimoto. M. (2013). Temperature dependence of gas evolution from polyolefins on irradiation under vacuum. Radiat. Phys. Chem., 85, 124-129.
Seguchi, T., Hashimoto, S., Arakawa, K., Hayakawa, N., Kawakami, W., & Kuriyama, I. (1981). Radiationinduced oxidative degradation of polymers. I. Oxidation region in polymer films irradiated in oxygen under pressure. Radiat. Phys. Chem., 17, 195-201.
Seguchi, T., Tamura, K., Ohshima, T., Shimada, A. & Kudoh, H. (2011). Degradation mechanisms of cable insulation materials during radiation-thermal aging in radiation environment. Radiat. Phys. Chem., 80, 268-273.
Seguchi, T., Tamura, K., Shimada, A., Sugimoto, M., & Kudoh, H. (2012). Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation aging. Radiat. Phys. Chem., 81, 1747-1751.
Sekii, Y. (2007). Influence of antioxidants and cross-linking on the crystallinity of XLPE dielectrics. Conference on electrical insulation and dielectric phenomena (719-722), October 14-17, Vancouver, Canada.
Sheldon, R. T., & Bowler, N. (2014). An interdigital capacitive sensor for nondestructive evaluation of wire insulation. IEEE Sensors J., 14, 961-970.
Shimada, A., Sugimoto, M., Kudoh, H., Tamura, K., & Seguchi, T. (2012). Radiation Aging Technique for Cable Life Evaluation of Nuclear Power Plant, IEEE Trans. Dielectr. Insul., 19, 1768-1773.
Simmons, K. L., Ramuhalli, P., Brenchley, D. L., Coble, J. B., Hashemian, H. M., Konnick, R. & Ray, S. (2012). LWRS Program-NDE R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants, PNNL-21731. September.
Smith, P., Furse, C., & Gunther, J. (2005). Analysis of spread spectrum time domain reflectometry for wire fault location. IEEE Sensors J, 5, 1469-1478.
Sugimoto, M., Shimada, A., Kudoh, H., Tamura, K., & Seguchi, T. (2013). Product analysis for polyethylene degradation by radiation and thermal aging. Radiat. Phys. Chem., 82, 69-73.
Tamblyn, J. W., & Newland, G. C. (1965). Induction period in aging of polypropylene. J. Appl. Polym. Sci., 9, 2251-2260.
Ugbolue, S. C. O. (Ed.). (2009). Polyolefin fibers: Industrial and medical applications. Elsevier.
Verardi, L., Fabiani, D., & Montanari, G. C. (2014). Electrical aging markers for EPR-based low voltage cable insulation wiring of nuclear power plants. Radiat. Phys. Chem., 94, 166-170.
White II, G., Bernstein, R., & Gillen, K. T. (2012). Current and ongoing cable aging research to support life extension decisions, Trans. Am. Nuclear Soc., 107, 438-440.
White, J., Tucholski, E. J., & Green, R. E. (2003). Nondestructive testing of aircraft and spacecraft wiring. Materials Evaluation, 61, 1315-1320.
White, C. C., Wagenblast, J., & Shaw, M. T. (2000). Separation, size reduction, and processing of XLPE from electrical transmission and distribution cable. Polymer Engng. Sci., 40(4), 863-879.
Wilski, H., Rosinger, S., & Diedrich, G. (1980). Langzeit- Bestrahlung von Rohren aus Polybuten-1. Kunstoffe, 70, 221.
Wise, J., Gillen, K.T., & Clough, R. L. (1995). An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers. Polym. Degrad. Stab., 49, 403-418.
Wise, J., Gillen, K. T., & Clough, R. L., (1997). Quantitative model for the time development of diffusion-limited oxidation profiles. Polymer, 38, 1929-1944.
Wright, K. J., & Lesser, A. J. (2001). Crystallinity and mechanical behavior evolution in ethylene-propylene random copolymers. Macromolecules, 34, 3626-3633.
Wundrich, K. (1968). Die Bestandigkeit von Kunststoffen Gegen Energiereiche Strahlen und Ihre Prufung. Material Pruefung, 10 (7), 217.
Section
Technical Papers