Probabilistic Life Models for Steel Structures Subject to Creep- Fatigue Damage



Published Nov 3, 2020
Fatmagul Ibisoglu Mohammad Modarres


When metal structures are subjected to long-term cyclic loading at high temperature, simultaneous creep and fatigue damage may occur. In this paper probabilistic life models, described by hold times in tension and total strain range at elevated temperature have been derived based on the creeprupture behavior of 316FR austenitic stainless steel, which is one of the candidate structural materials for fast reactors and future Generation IV nuclear power plants operating at high temperatures. The parameters of the proposed creepfatigue model were estimated using a standard Bayesian regression approach. This approach has been performed using the WinBUGS software tool, which is an open source Bayesian analysis software tool that uses the Markov Chain Monte Carlo sampling method. The results have shown a reasonable fit between the experimental data and the proposed probabilistic creep-fatigue life assessment models. The models are useful for predicting expended life of the critical structures in advanced high temperature reactors when performing structural health management.

Abstract 442 | PDF Downloads 379



creep, Bayesian regression, creep-fatigue, expended life, probabilistic model, high temperature steel structures

Anon. Code Case N-47 (1976). ASME boiler and pressure vessel code, Criteria for design of elevated temperature, Class I Components in section III, division 1, American Society of Mechanical Engineers.
Asayama, T., & Tachibana, Y. (2007). Collection of Available Creep-Fatigue Data and Study Existing Creep Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR. JAEA Task 5 Report, Sept 30. Retrieved from
Asayama, T. (2009). Methodology for the Determination of a Set of Safety Factors That are Consistent for Design Code and Fitness-for-Service Code: Case Study for Fast Breeder Reactors. ASME 2009 Pressure Vessels and Piping Conference (pp.705-710), 26-30 July, Prague, Czech Republic. doi:10.1115/PVP2009-77686
Brinkman, C.R. (1985). High-Temperature Time-Dependent Fatigue Behavior of Several Engineering Structural Alloys. International Metals Review, Vol.30, No.5, pp.235-258. doi:10.1179/imr.1985.30.1.235
Chen, L.J., Wang, Z.G., Yao, G. & Tian, J.F. (2008). An Assessment of Three Creep-Fatigue Prediction Methods for Nickel-Based Superalloy GH4049. Fatigue Fract Engng Mater Struct, Vol.23, pp.509-519. doi:10.1046/j.1460-2695.2000.00311.x
Evans. M. (1999). Method for Improving Parametric Creep Rupture Life of 2.25Cr-1Mo Steel using Artificial Neural Networks. Materials Science and Technology, Vol.15, Issue:6, pp.647-658. doi:10.1179/026708399101506391
Fan, Z., Chen, X., Chen, L. & Jiang, J. (2007). Fatigue-Creep Behavior of 1.25Cr0.5Mo Steel at High Temperature and Its Life Prediction. International Journal of Fatigue, Vol.29, pp.1174-1183. doi:10.1016/j.ijfatigue.2006.07.008
Fatemi, A., & Yang, L. (1998). Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogenous Materials. International Journal of Fatigue, Vol.20, Issue:1, pp.9-34. doi:10.1016/S0142-1123(97)00081-9
Forman, R.G. (1972). Study of Fatigue Crack Initiation from Flaws using Fracture Mechanics Theory. Engineering Fracture Mechanics, Vol.4, Issue:2, pp.333-345. doi:10.1016/0013-7944(72)90048-3
Goswami, T. (2004). Development of Generic Creep-Fatigue Life Prediction Models. Materials and Design, Vol.25, pp.277-288. doi:10.1016/j.matdes.2003.11.001
He, J.R., Duan, Z.X., Ning, Y.L. & Zhao, D. (1985). Strain Energy Partitioning and Its Application to GH33A Ni-Base Superalloy and 1Cr18Ni9Ti Stainless steel. Acta Metalurgica. Sinica, Vol:21 A., pp.54-62 (in Chinese). Retrieved from
Holmström, S. & Auerkari, P. (2013). A Robust Model for Creep-Fatigue Life Assessment. Materials Science and Engineering A,Vol.559, pp.333-335. doi:10.1016/j.msea.2012.08.107
Holmström, S., Pohja, R., Nurmela, A., Moilanen, P., & Auerkari, P. (2013). Creep and Creep-Fatigue Behavior of 316 Stainless Steel. 6th International Conference on Creep, Fatigue and Creep-Fatigue Interaction [CF-6], Procedia Engineering, Vol.55, pp.160-164. doi:10.1016/j.proeng.2013.03.236
Ibisoglu. F. (2013). Probabilistic Models for Creep-Fatigue in a Steel Alloy, Master’s thesis, University of Maryland, College Park. ProQuest/UMI. (Publication No. AAT 1541465.). Retrieved from
Jeong, C.Y., Choi, B.G. & Nam, S.W. (2001). Normalized Life Prediction in Terms of Stress Relaxation Behavior under Creep-Fatigue Interaction. Materials Letters, Vol.49, Issue.1, pp.20-24. doi:10.1016/s0167-577X(00)00334-7
JianPing, J., Guang, M., Yi, S. & SongBo, X. (2003). An Effective Continuum Damage Mechanics Model for Creep-Fatigue Life Assessment of a Steam Turbine Rotor. International Journal of Pressure Vessels and Piping, Vol.80, pp.389-396. doi:10.1016/S0308-0161(03)00070-X
Larson, F.R., & Miller, J. (1952). A Time-Temperature Relationship for Rupture and Creep Stresses. Trans. ASME 74, pp.765–775.
Lloyd, G.J. & Wareing, J. (1981). Life-Prediction Methods for Combined Creep-Fatigue Endurance. Metals Technology, Vol.8, Issue:1, pp.297-305. doi:http:10.1179/030716981803275262
Modarres, M., Kaminskiy, M., & Kristov, V. (2010). Reliability Engineering and Risk Analysis, A Practical Guide, 2nd Edition, FL:CRC Press.
Nam, S.W. (2002). Assessment of Damage and Life Prediction of Austenitic Stainless Steel under High Temperature Creep-Fatigue Interaction Condition. Materials Science and Engineering:A, Vol.322, Issues:1-2, pp.64-72. doi:10.1016/S0921-5093(01)01118-2
National Aeronautics and Space Administration. (1953). A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data. TN-2890, Technical Report. Manson, S.S., Haferd, A.M.
National Aeronautics and Space Administration. (1963). Design Considerations for Long Life at Elevated Temperatures. TP 1-63. Manson, S.S.
National Aeronautics and Space Administration. (1965). Optimization of Time-Temperature Parameters for Creep and Stress Rupture, with Application to Data from German Cooperative Long-Time Creep Program. TN D-2975. Mendelson, A., Roberts, E., Manson. S.S. Retrieved from
National Aeronautics and Space Administration. (1971). Ductility Normalized Strain Range Partitioning Life Relations for Creep-Fatigue Life Predictions. TMX 67838. Halford, G.R., Saltsman, J.F. and Hirschberg, M.H.
Nicholas, T. (1990). Fatigue Crack Growth Modeling at
Elevated Temperatures Using Fracture Mechanics in Elevated Temperature Crack Growth, MD-Vol. 18, Mall, S. and Nicholas, T., Eds., American Society of Mechanical Engineers, New York, pp.107-112.
Orr, R.L., Sherby, O.D., & Dorn, J.E. (1954). Correlation of Rupture Data for Metals at Elevated Temperatures. Trans. ASM 46, 113. Retrieved from
Parida, B.K., & Nicholas, T. (1992). Frequency and Hold Time Effects on Crack Growth of Ti-24Al-11Nb at High Temperature. Materials Science and Engineering A, Vol.153, Issue:1-2, pp.493-498. doi:10.1016/0921-5093(92)90242-S
Pavese, F., Bar, M., Filtz, J-R., Forbes, A.B., Pendrill, L., & Shirono, K. (Eds.) (2012). Advanced Mathematical and Computational Tools in Metrology and Testing IX, Series on Advances in Mathematics for Applied Sciences – Vol.84, pp.377-384.
Riou, B. (2008). Improvement of ASME Section III-NH for Grade 91 Negligible Creep and Creep Fatigue. ASME ST LLC, DOE/ID14712-3.
Saxena, A. (1980). Creep Crack Growth under Non-Steady State Conditions, Fracture Mechanics in 17th Conference STP 905, ASTM Special Technical Publication, pp.247-255.
Scholz, A. & Berger, C. (2005). Deformation and Life Assessment of High Temperature Materials under Creep Fatigue Loading. Materialwissenschaft und Werkstofftechnik, Vol.36, Issue:11, pp.722-730. doi:10.1002/mawe.200500941
Shang, D., Sun, G., Yan, C., Chen, J. & Cai, N. (2007). Creep-Fatigue Prediction under Fully-Reversed Multiaxial Loading at High Temperatures. International Journal of Fatigue, Vol.29, Issue:4, pp.705-712. doi:10.1016/j.ijfatigue.2006.06.010
Takahashi, Y., Shibamoto, H., & Inoue, K. (2008a). Long-Term Creep Rupture Behavior of Smoothed and Notched Bar Specimens of Low-Carbon Nitrogen-Controlled 316 Stainless Steel (316FR) and Their Evaluation. Nuclear Engineering and Design, Vol.238, Issue:2, pp.310-321. doi:10.1016/j.nucengdes.2006.09.010
Takahashi, Y., Shibamoto, H. & Inoue, K. (2008b). Study on Creep-Fatigue Life Prediction Methods for Low-Carbon Nitrogen-Controlled 316 Stainless Steel (316FR). Nuclear Engineering and Design, Vol.238, Issue:2, pp.322-335. doi:10.1016/j.nucengdes.2006.09.017
Trunin, I.I., Golobova, N.G. & Loginov, E.A. (1971). New Method of Extrapolation of Creep Test and Long Time Strength Results. In Proceedings of the Fourth International Symposium on Heat-Resistant Metallic Materials, Mala Fatra, CSSR, pp.168-176.
Wendell, F. (2011). A Handbook on Accelerated Testing. In fulfillment of the Scholarly Paper Requirement for the Degree of Master of Science in Reliability Engineering, Modarres, M. (Adv.), Department of Mechanical Engineering, University of Maryland, College Park.
Wilshire, B., Scharning, P., & Hurst, R. (2009). A New Approach to Creep Data Assessment. Material Science and Engineering:A, Vol.510-511, pp.3-6. doi:10.1016/j.msea.2008.04.125
Zhao, J., Li, D-M., & Fang, Y-Y. (2010). Application of Manson-Haferd and Larson-Miller Methods in Creep Rupture Property Evaluation of Heat-Resistant Steels. J. Pressure Vessel Technol., Vol.132, Issue:6, pp.064502-064502-4. doi:10.1115/1.4001916
Zhang, G., Yuan, H. & Li, F. (2012). Analysis of Creep-Fatigue Life Prediction Models for Nickel-Based Super Alloys. Computational Materials Science, Vol.57, pp.80-88. doi:10.1016/j.commatsci.2011.07.034
Technical Papers