Prognostic-oriented Fuel Cell Catalyst Aging Modeling and Its Application to Health-Monitoring and Prognostics of a PEM Fuel Cell



Published Nov 1, 2020
Xian Zhang Pierluigi Pisu


Today, poor long-term performance and durability combined with high production and maintenance costs remain the main obstacles for the commercialization of the polymer electrolyte membrane (PEM) fuel cells (PEMFCs). While on-line diagnosis and operating condition optimization play an important role in addressing the durability issue of the fuel cell, health-monitoring and prognosis (or PHM) techniques are of equally great significance in terms of scheduling condition-based maintenance (CBM) to minimize repair and maintenance costs, the associated operational disruptions, and also the risk of unscheduled downtime for the fuel cell systems.
The two essential components of a PHM scheme for a general engineering system are 1) an accurate aging model that is capable of capturing the system’s gradual health deterioration, and 2) an algorithm for damage estimation and prognostics. In this paper, a physics-based, prognostic-oriented fuel cell catalyst degradation model is developed to characterize the relationship between the operating conditions and the degradation rate of the electro-chemical surface area (ECSA). The model complexity is kept minimal for on-line prognostic purpose. An unscented Kalman filter (UKF) approach is then proposed for the purpose of damage tracking and remaining useful life prediction of a PEMFC.

Abstract 420 | PDF Downloads 272




Alejandro, J., Arce, A., & Bordons, C. (2007). Development and experimental validation of a PEM fuel cell dynamic model. Journal of Power Sources, 173, 310–324.
Bi, W., & Fuller, T. F. (2008). Modeling of PEM fuel cell Pt/C catalyst degradation. Journal of Power Sources, 178(1), 188–196. doi:10.1016/j.jpowsour.2007.12.007
Chelidze, D., & Cusumano, J. P. (2004). A Dynamical Systems Approach to Failure Prognosis. Journal of Vibration and Acoustics, 126(1), 2. doi:10.1115/1.1640638
Chelidze, D., Cusumano, J. P., & Chatterjee, A. (2002). A Dynamical Systems Approach to Damage Evolution Tracking, Part 1: Description and Experimental Application. Journal of Vibration and Acoustics, 124(2), 250. doi:10.1115/1.1456908
Danzer, M. A., Wilhelm, J., Aschemann, H., & Hofer, E. P. (2008). Model-based control of cathode pressure and oxygen excess ratio of a PEM fuel cell system. Journal of Power Sources, 176(2), 515–522.
Darling, R.M., & Meyers, J. P. (2003). Kinetic model of platinum dissolution in PEMFCs. Journal of the Electrochemical Society, 150(11), 1523–7. doi:10.1149/1.1613669
Darling, Robert M., & Meyers, J. P. (2005). Mathematical model of platinum movement in PEM fuel cells. Journal of the Electrochemical Society, 152(1), A242–A247. doi:10.1149/1.1836156
Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D., & Atanasoski, R. (2006). High voltage stability of nanostructured thin film catalysts for PEM fuel cells. Journal of Power Sources, 161(2), 1002–1011. doi:10.1016/j.jpowsour.2006.05.033
Franco, A. A., Schott, P., Jallut, C., & Maschke, B. (2007). A Multi-Scale Dynamic Mechanistic Model for the Transient Analysis of PEFCs. Fuel Cells, 7(2), 99–117. doi:10.1002/fuce.200500204
Franco, A.A., & Tembely, M. (2007). Transient multiscale modeling of aging mechanisms in a PEFC cathode. Journal of the Electrochemical Society, 154, B712.
Franco, Alejandro A., Coulon, R., Ferreira de Morais, R., Cheah, S. K., Kachmar, A., & Gabriel, M. A. (2009). Multi-scale Modeling-based Prediction of PEM Fuel Cells MEA Durability under Automotive Operating Conditions (pp. 65–79). ECS. doi:10.1149/1.3210560
Franco, Alejandro A., & Gerard, M. (2008). Multiscale Model of Carbon Corrosion in a PEFC: Coupling with Electrocatalysis and Impact on Performance Degradation. Journal of The Electrochemical Society, 155(4), B367. doi:10.1149/1.2838165
Franco, Alejandro A., Gerard, M., Guinard, M., Barthe, B., & Lemaire, O. (2008). Carbon Catalyst-Support Corrosion in Polymer Electrolyte Fuel Cells: Mechanistic Insights (pp. 35–55). ECS.
Holby, E.F., Shao-Horn, Y., Sheng, W. C., & Morgan, D. (2010). New understanding of Pt surface area loss in PEMFC’s: Temperature effects. In 10th Polymer Electrolyte Fuel Cell Symposium, PEFC 10 - 218th ECS Meeting, October 10, 2010 - October 15, 2010 (Vol. 33, pp. 369–377). Las Vegas, NV, United states: Electrochemical Society Inc. doi:10.1149/1.3484535
Holby, Edward F., Sheng, W., Shao-Horn, Y., & Morgan, D. (2009). Pt nanoparticle stability in PEM fuel cells: Influence of particle size distribution and crossover hydrogen. Energy and Environmental Science, 2(8), 865–871. doi:10.1039/b821622n
Miotti, A., Di Domenico, A., Guezennec, Y. G., & Rajagopalan, S. (2005). Control-oriented model for an automotive PEM fuel cell system with imbedded 1+1D membrane water transport. In 2005 IEEE Vehicle Power and Propulsion Conference, VPPC, September 7, 2005 - September 9, 2005 (Vol. 2005, pp. 611–618). Chicago, IL, United states: Inst. of Elec. and Elec. Eng. Computer Society. doi:10.1109/VPPC.2005.1554622
Okada, T. (2003). Effect of Ionic contaminants. In Handbook of Fuel Cells – Fundamentals, Technology and Applications (pp. 627–646). Wiley & Sons.
Pukrushpan, J. T., Peng, H., & Stefanopoulou, A. G. (2004). Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems. Journal of Dynamic Systems, Measurement, and Control, 126(1), 14. doi:10.1115/1.1648308
Schmittinger, W., & Vahidi, A. (2008). A review of the main parameters influencing long-term performance and durability of PEM fuel cells. Journal of Power Sources, 180(1), 1–14. doi:10.1016/j.jpowsour.2008.01.070
Shao-Horn, Y., Sheng, W. C., Chen, S., Ferreira, P. J., Holby, E. F., & Morgan, D. (2007). Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells. Topics in Catalysis, 46(3-4), 285–305. doi:10.1007/s11244-007-9000-0
Shengsheng Zhang, Xiaozi Yuan, Haijiang Wang, Merida, W., Hong Zhu, Jun Shen, … Jiujun Zhang. (2009). A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy, 34(1), 388–404. doi:10.1016/j.ijhydene.2008.10.012
Shimoi, R., Aoyama, T., & Iiyama, A. (2009). Development of Fuel Cell Stack Durability based on Actual Vehicle Test Data: Current Status and Future Work (No. 2009-01-1014). Warrendale, PA: SAE International. Retrieved from
Soltani, M., & Bathaee, S. M. T. (2010). Development of an empirical dynamic model for a Nexa PEM fuel cell power module. Energy Conversion and Management, 51(12), 2492–500.
Todinov, M. T. (2001). Necessary and sufficient condition for additivity in the sense of the Palmgren–Miner rule. Computational materials science, 21(1), 101–110.
Wan, E., & Merwe, R. (n.d.). Chapter 7: The Unscented Kalman Filter. In Kalman Filtering and Neural Networks. Wiley Publishing.
Zhang, X., & Pisu, P. (2012). An Unscented Kalman Filter Based Approach for the Health-Monitoring and Prognostics of a PEM Fuel Cell (Vol. 3). Presented at the Annual Conference of the Prognostics and Health Management Society 2012, Minneapolis, MN.
Technical Papers