Targeting Faulty Bearings for an Ocean Turbine Dynamometer

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 1, 2020
Nicholas Waters Pierre-Philippe Beaujean David J. Vendittis

Abstract

A real-time, vibrations-based condition monitoring method used to detect, localize, and identify a faulty bearing in an ocean turbine electric motor is presented in this paper. The electric motor is installed in a dynamometer emulating the functions of the actual ocean turbine. High frequency modal analysis and power trending are combined to assess the operational health of the dynamometer’s bearings across an array of accelerometers. Once a defect has been detected, envelope analysis is used to identify the exact bearing containing the defect. After a brief background on bearing fault detection, this paper introduces a simplified mathematical model of the bearing fault, followed with the signal processing approach used to detect, locate, and identify the fault. In the results section, effectiveness of the methods of bearing fault detection presented in this paper is demonstrated through processing data collected, first, from a controlled lathe setup and, second, from the dynamometer. By mounting a bearing containing a defect punched into its inner raceway to a lathe and placing an array of accelerometers along the length of lathe, the bearing fault is clearly detected, localized, and identified as an inner raceway defect. Through retroactively trending the data leading to the near-failure of one of the electric motors in the dynamometer, the authors identified a positive trend in energy levels for a specific frequency band present across the array of accelerometers and identify two bearings as possible sources of the fault.

defects, Bearing Faults, turbine engine, rotating machinery, modulation; demodulation, Fault Detection; Techniques; Ocean Turbine, renewable energy, ocean engineering

Abstract 194 | PDF Downloads 197

##plugins.themes.bootstrap3.article.details##

Keywords

defects, Bearing Faults, turbine engine, rotating machinery, modulation, demodulation, Fault Detection, Techniques, Ocean Turbine, renewable energy, ocean engineering

References
Fernandez, A., Bibao, J., Bediaga, I., Gaston, A., & Hernandez, J., (2005). Feasibility study on diagnostic methods for detection of bearing faults at an early stage. Proceeding of WSEAS International Conference, November 2-4, Venice, Italy, pp.113-118. http://www.wseas.us/elibrary/conferences/2005venice/papers/508-367.pdf
Muszynska, A., (1995). Vibrational Diagnostics of Rotating Machinery Malfunctions. International Journal of Rotating Machinery, vol. 1, No. 3-4, pp. 237-266. doi:10.1155/S1023621X95000108
International Standards Organization (ISO) (2002). Condition monitoring and diagnostics of machines-Vibration condition monitoring part 1: General Procedures. In ISO 13373-1: 2002.
International Standards Organization (ISO) (2005). Condition monitoring and diagnostics of machines- Vibration condition monitoring part 2: Processing, analysis and presentation of vibration data. In ISO 13373-2: 2005.
Ho, D., & Randall, R. B., (2000). Optimisation of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault Signatures. Journal of Mechanical Systems and Signal Processing, vol. 14, Issue 5, pp. 763-788. doi: 10.1006/mssp.2000.1304
Ifeachor, E. C., & Jervis, B. W., (2002). Spectrum estimation and analysis. In Digital Signal Processing 2nd ed (pp. 704-705). Harlow, England: Pearson Education Limited.
Driscoll, F. R., Alsenas, G. M., Beaujean, P. P., Ravenna, S., Raveling, J., Busold, E., & Slezycki, C. (2008). A 20 kW Open Ocean Current Test Turbine. Proceedings of the MTS/IEEE Oceans '08. September. Quebec City, Quebec, Canada. http://209-20-84-91.slicehost.net/assets/2009/3/4/A_20_kW_Open_Ocean_Current_Test_Turbine.pdf
Marichal, G. N., Arte s, M., & arc a-Prada, J. C., (2010) An intelligent system for faulty-bearing detection based on vibration spectra. Journal of Vibration and Control, vol. 17, no. 6, pp. 931–942. doi: 10.1177/1077546310366264
Cooper, G. R., & McGillem, C. D., (1999). Spectral Density. In Probabilistic Methods of Signal and System Analysis 3rd ed. (pp. 257–271). Oxford, New York: Oxford University Press, Inc.
Konstantin-Hansen, H., & Herlufsen, H., (2003). Envelope Analysis for Diagnostics of Local Faults in Rolling Element Bearings. Bruel & Kjaer Sound and Vibration Measurement, pp. 1-8. http://www.bksv.com/doc/bo0501.pdf
Konstantin-Hansen, H., & Herlufsen, H., (2010). Envelope and Cepstrum Analysis for Machinery Fault Identification. Bruel & Kjaer Sound and Vibration, pp. 10-12. http://www.sandv.com/downloads/1005hans.pdf
Onel, I. Y., Dalci, K. B., & Senol, I., (2005). Detection of Outer Raceway Bearing Defects in Small Induction Motors Using Stator Current Analysis. Sadhana, vol. 30, part 6, pp.716. doi: 10.1007/BF02716705
Courrech, J., & Gaudet, M.,. Envelope Analysis – The Key to Rolling-Element Bearing Diagnosis. Bruel & Kjaer Vibration and Sound. http://www.bksv.com/doc/BO0187.pdf
Renwick, J. T., & Babson, P. E., (1985). Vibration Analysis-A Proven Technique as a Predictive Maintenance Tool. IEEE Transactions on Industry Applications, vol. IA- 21, no. 2. doi: 10.1109/TIA.1985.349652
Mjit, M. M., (2009). Methodology For Fault Detection and Diagnostics in an Ocean Turbine Using Vibration Analysis and Modeling. Master’s thesis, Florida Alantic University, Boca Raton, FL. http://snmrec.fau.edu/sites/default/files/research/theses/DT-09-335.pdf
Mjit, M., Beaujean, P. J., & Vendittis, D. J., (2011). Comparison of Fault Detection Techniques for an Ocean Turbine. Annual Conference of the Prognostics and Health Management Society. September 25-29, Portland, OR. https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2011/phmc_11_023.pdf
Mjit, M., Beaujean, P. J., & Vendittis, D. J., (2010). Remote Health Monitoring for Offshore Machines, using Fully Automated Vibration Monitoring and Diagnostics. Proceedings of Annual Conference of the Prognostics and Health Management Society, October 10-16, Portland, OR. https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2010/phmc_10_006.pdf
Norton, M. P., & Karczub, D. G., (2003). The Analysis of Noise and Vibration Signals. In, Fundamentals of noise and vibration analysis for engineers, 2nd ed. (pp. 353–357). Cambridge, UK: Cambridge University Press.
Valente, M., et al. (2008). Hearing Protection. In, Audiology Treatement, 2nd ed. (pp. 371-373). New York, NY: Theime Medical Publishers.
Thrane, N., Wismer, J., Konstantin-Hansen, H., & Gade, S., (1995) Practical use of the “Hilbert transform”, Bruel & Kjaer Application Notes. http://www.bksv.com/doc/bo0437.pdf
Thrane, N., (1984). The Hilbert Transform. Bruel & Kjaer, Techical Review, No. 3 (pp. 3-15). http://www.bksv.com/doc/bv0015.pdf
McFadden, P. D., & Smith, J. D., (1984). Model for the Vibration Produced by a Single Point Defect in a Rolling Element bearing. Journal of Sound and Vibration, vol. 96, no. 1, pp. 69-82. doi: 10.1016 /0022-460X(84)90595-9
Jayaswal, P., Wadhwani, A. K., & Mulchandani, K. B., (2008). Machine Fault Signature Analysis. International Journal of Rotating Machinery. vol. 2008. doi:10.1155/2008/583982
McInerny, S. A., and Dai, Y., (2003). Basic Vibration Signal Processing for Bearing Fault Detection. IEEE Transactions on Education, vol. 46, no. 1. doi: 10.1109/TE.2002.808234
Wang, W.-Y., & Harrap, M. J., (1996). Condition Monitoring of Ball Bearings Using Envelope Autocorrelation Technique. Journal of Machine Vibration, vol. 5, pp. 34- 44. http://cat.inist.fr/?aModele=afficheN&cpsidt=3150743
Wang, Y.-F., & Kootsookos, P. J., (1999). Modeling of Low Shaft Speed Bearing Faults For Condition Monitoring. Mechanical Systems and Signal Processing, vol. 12, no. 3, pp. 415-426. http://espace.library.uq.edu.au/eserv.php?pid=UQ:10968&dsID=MechSysAndSigPro.pdf
Sheen, Y. -T., (2004). A complex filter for vibration signal demodulation in bearing defect diagnosis. Journal of Sound and Vibration, vol. 276, pp.105-119. doi: 10.1016/j.jsv.2003.08.007
Sheen, Y.-T., (2007). An impulse-response extracting method from the modulated signal in a roller bearing. Journal of the International Measurement Confederation, vol. 40, Issue 9-10, pp. 868-875. http://ir.lib.stut.edu.tw/bitstream/987654321/8162/2/paper4.pdf
Su, Y.-T., & Lin, S.-J., (1992). On Initial Fault Detection of a Tapered Roller Bearing: Frequency Domain Analysis. Journal of Sound and Vibration, vol. 155, no. 1, pp. 75-84. doi: 10.1016/0022-460X(92)90646-F
Section
Technical Papers