Analysis of the Deployment Strategies of Reinforcement Learning Controllers for Complex Dynamic Systems
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper benchmarks several strategies for deploying reinforcement learning (RL)-based controllers on heterogeneous hybrid systems. Sample inefficiency is often a significant cost for RL controllers because we need sufficient data to train them, and the controllers may take time to converge to an acceptable control policy. This can be doubly costly if system health is degrading, or if the network of such systems in turn cannot afford a gradually improving controller in its constituents. Learning speed improvement can be achieved via transfer learning across controllers trained on different tasks: simulations, data-driven models, or separate instances of similar systems. This paper discusses near- and far- transfers across tasks of varying similarities. These approaches are applied on a test-bed of models of cooling towers operating on office and residential buildings on a university campus.
How to Cite
##plugins.themes.bootstrap3.article.details##
reinforcement learning, data driven approaches, smart cities, Adaptive Control & Fault Accommodation
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.