A Data Management Framework & UAV Simulation Testbed for the Study of System-level Prognostics Technologies
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Prognostics-enabled technologies have emerged over the last few years primarily for predictive maintenance activites such as condition based maintenance (CBM), or its successor, CBM+, that accounts for the entire network of support elements required to execute a CBM program. However, due to the challenges that arise from real-world systems and safety concerns, they have not been adopted for operational decision making based on system end of life estimates. It is typically cost-prohibitive or highly unsafe to run a system to complete failure and, therefore, engineers turn to simulation studies for analyzing system performance. Prognostics research has matured to a point where we can start putting pieces together to be deployed on real systems, but this reveals new problems. First, a lack of standardization exists within this body of research that hinders our ability to compose various technologies or study their joint interactions when used together. The second hindrance lies in data management and creates hurdles when trying to reproduce results for validation or use the data as input to machine learning algorithms. We propose an end-to-end object-oriented data management framework & simulation testbed that can be used for a wide variety of applications. We describe the requirements, design, and implementation of the framework and provide a use-case application involving a stochastic data collection experiment that demonstrates how the framework can be used.
How to Cite
##plugins.themes.bootstrap3.article.details##
prognostics, software in the loop, testbed, UAV
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.