Li-ion Battery Aging with Hybrid Physics-Informed Neural Networks and Fleet-wide Data
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In this work, we propose a hybrid model for Li-ion battery discharge and aging prediction that leverages fleet-wide data to predict future capacity drops. The model is built upon an hybrid approach merging physics-based and empirical equations, as well as neural network models in a recurrent neural network cell. The hybrid physics-informed neural network can predict voltage discharge cycles given the loading profile, and estimate the used capacity of the battery under randomloading conditions by tracking aging parameters connected to the residual capacity of the battery. By merging information on the battery aging parameters with existing fleet-wide aging data, the model can predict the future residual capacity of the battery that is being monitored, and therefore enable predictions of voltage discharge curves far ahead in the battery life cycle. We validated the approach using the NASA Prognostics Data Repository Battery data-set, which contains experimental data on Li-ion batteries discharged at random loading conditions in a controlled environment. The approach also allows the identification of discrepancies between the battery aging trend and the trend observed at the fleet level, so that batteries behaving differently from the rest of the fleet can be subject to closer monitoring and further testing to refine predictions.
How to Cite
##plugins.themes.bootstrap3.article.details##
Physics-Informed Neural Networks, Li-ion Battery Prognostics, Battery Aging, Scientific Machine Learning, Uncertainty Quantification, Hybrid Models
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.