Enhancing Fault Isolation for Health Monitoring of Electric Aircraft Propulsion by Embedding Failure Mode and Effect Analysis into Bayesian Networks

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 3, 2020
Chetan S Kulkarni Matteo Corbetta Elinirina Robinson

Abstract

This paper describes a fault isolation approach for electric powertrains of unmanned aerial vehicles.The approach leverages the combination of failure mode and effect analysis (FMEA) and  Bayesian networks,

thus introducing dependability structures into a diagnostic framework. Faults and failure events from the FMEA are mapped within a Bayesian network, where network edges replicate the links embedded whitin FMEAs. This framework helps the fault isolation process by identifying the probability of occurrence of specific faults or root causes given evidence observed through sensor signals. The framework is applied to an electric powertrain system of a small, rotary-wing unmanned aerial vehicle, demonstrating how a Bayesian network enhanced by FMEA helps disambiguate between root causes of incipient failures, which would otherwise be considered as equally probable.

How to Cite

Kulkarni, C. S., Corbetta, M., & Robinson, E. (2020). Enhancing Fault Isolation for Health Monitoring of Electric Aircraft Propulsion by Embedding Failure Mode and Effect Analysis into Bayesian Networks. Annual Conference of the PHM Society, 12(1), 12. https://doi.org/10.36001/phmconf.2020.v12i1.1297
Abstract 1255 | PDF Downloads 736

##plugins.themes.bootstrap3.article.details##

Keywords

FMEA, Bayesian network, UAV, Powertrain

Section
Technical Research Papers