From Prediction to Prescription: Large Language Model Agent for Context-Aware Maintenance Decision Support

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 27, 2024
HAOXUAN DENG Bernadin Namoano BOHAO ZHENG Samir Khan John Ahmet Erkoyuncu

Abstract

Predictive analytics with machine learning approaches has widely penetrated and shown great success in system health management over the decade. However, how to convert the prediction to an actionable plan for maintenance is still far from mature. This study investigates how to narrow the gap
between predictive outcomes and prescriptive descriptions for system maintenance using an agentic approach based on the large language model (LLM). Additionally, with the retrieval-augmented generation (RAG) technique and tool usage capability, the LLM can be context-aware when making decisions in maintenance strategy proposals considering predictions from machine learning. In this way, the proposed method can push forward the boundary of current machine-learning methods from a predictor to an advisor for decision-making workload offload. For verification, a case study on linear actuator fault diagnosis is conducted with the GPT-4 model. The result demonstrates that the proposed method can perform fault detection without extra training or fine-tuning with comparable performance to baseline methods and deliver more informatic diagnosis analysis and suggestions. This research can shed light on the application of large language models in the construction of versatile and flexible artificial intelligence agents for maintenance tasks.

How to Cite

DENG, H., Namoano, B., ZHENG, B., Khan, S., & Ahmet Erkoyuncu, J. . (2024). From Prediction to Prescription: Large Language Model Agent for Context-Aware Maintenance Decision Support. PHM Society European Conference, 8(1), 10. https://doi.org/10.36001/phme.2024.v8i1.4114
Abstract 6 | PDF Downloads 17

##plugins.themes.bootstrap3.article.details##

Keywords

large language model, time series classification, fault detection and identification, decision support, context-awaren maintenance

References
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q., Demszky, D., … Liang, P. (20 21). On the Opportunities and Risks of Foundation Models. https://arxiv.org/abs/2108.07258v3 Dempster, A., Petitjean, F., & Webb, G. I. (2019). ROCKET:

Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery, 34(5), 14541495. https://doi.org/10.1007/s10618-020-00701-z Dempster, A., Schmidt, D. F., & Webb, G. I. (2020).

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 248–257. https://doi.org/10.1145/3447548.3467231 Faouzi, J. (n.d.). Time Series Classification: A review of Algorithms and Implementations. Retrieved March 23, 2024, from https://inria.hal.science/hal-03558165 Faouzi, J., & Janati, H. (2020). pyts: A Python Package for Time Series Classification. Journal of Machine Learning Research, 21(46), 1–6. http://jmlr.org/papers/v21/19-763.html
Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt,

D. F., Weber, J., Webb, G. I., Idoumghar, L., Muller,

P.-A., & Petitjean, F. (2019). InceptionTime: Finding AlexNet for Time Series Classification. Data Mining and Knowledge Discovery, 34(6), 1936–1962. https://doi.org/10.1007/s10618-020-00710-y Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., & Liu, T. (2023). A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions. https://arxiv.org/abs/2311.05232v1 Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., & Zeng, A. (2023). Code as Policies: Language Model Programs for Embodied Control. Proceedings - IEEE International Conference on Robotics and Automation, 2023-May, 9493–9500. https://doi.org/10.1109/ICRA48891.2023.10160591 Matyas, K., Nemeth, T., Kovacs, K., & Glawar, R. (2017). A procedural approach for realizing prescriptive maintenance planning in manufacturing industries. CIRP Annals, 66(1), 461–464. https://doi.org/10.1016/J.CIRP.2017.04.007 Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J. (2022). A Time Series is Worth 64 Words: Long -term Forecasting with Transformers. https://arxiv.org/abs/2211.14730v2 OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., … Zoph, B. (2023). GPT-4 Technical Report. https://arxiv.org/abs/2303.08774v6 Roy, R., Stark, R., Tracht, K., Takata, S., & Mori, M. (2016). Continuous maintenance and the future – Foundations and technological challenges. CIRP Annals, 65(2), 667–688. https://doi.org/10.1016/J.CIRP.2016.06.006 Ruiz-Carcel, C., & Starr, A. (2018). Data-Based Detection and Diagnosis of Faults in Linear Actuators. IEEE Transactions on Instrumentation and Measurement, 67(9), 2035–2047. https://doi.org/10.1109/TIM.2018.2814067 Sapna, R., Monikarani, H. G., & Mishra, S. (2019). Linked data through the lens of machine learning: An Enterprise view. Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019. https://doi.org/10.1109/ICECCT.2019.8869283 Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Van Den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature 2017 550:7676, 550(7676), 354–

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. Advances in Neural Information Processing Systems, 35. https://arxiv.org/abs/2201.11903v6 Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou, E., Zheng, R., Fan, X., Wang, X., Xiong, L., Zhou, Y., Wang, W., Jiang, C., Zou, Y., Liu, X., … Gui, T. (2023). The Rise and Potential of Large Language Model Based Agents: A Survey. https://github.com/WooooDyy/LLM-AgentPaper-List. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). ReAct: Synergizing Reasoning and Acting in Language Models. https://arxiv.org/abs/2210.03629v3 Zonta, T., da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889. https://doi.org/10.1016/J.CIE.2020.106889
Section
Technical Papers