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ABSTRACT 

Predictive analytics with machine learning approaches has 

widely penetrated and shown great success in system health 

management over the decade. However, how to convert the 

prediction to an actionable plan for maintenance is still far 

from mature. This study investigates how to narrow the gap 

between predictive outcomes and prescriptive descriptions 

for system maintenance using an agentic approach based on 

the large language model (LLM). Additionally, with the 

retrieval-augmented generation (RAG) technique and tool 

usage capability, the LLM can be context-aware when 

making decisions in maintenance strategy proposals 

considering predictions from machine learning. In this way, 

the proposed method can push forward the boundary of 

current machine-learning methods from a predictor to an 

advisor for decision-making workload offload. For 

verification, a case study on linear actuator fault diagnosis is 

conducted with the GPT-4 model. The result demonstrates 

that the proposed method can perform fault detection without 

extra training or fine-tuning with comparable performance to 

baseline methods and deliver more informatic diagnosis 

analysis and suggestions. This research can shed light on the 

application of large language models in the construction of 

versatile and flexible artificial intelligence agents for 

maintenance tasks. 

1. INTRODUCTION 

Predictive analytics for product health management has 

attracted increasing attention from the industry with the rise 

of machine learning in the last decade. With the advent of 

advanced data processing and statistics methods, features and 

patterns of the system's running state can be captured from 

historical logs and sensor data. By doing this, potential 

system failure can be forecasted and allow people to outline 

the plan for maintenance or adjustment in advance of system 

deterioration. This can not only prolong the lifespan of the 

system but also lead to lower costs of periodic checking and 

overhauls in traditional preventive and reactive maintenance 

(Zonta et al., 2020).  

Since the 2010s, deep learning that builds upon artificial 

neural networks (ANNs) played an essential role in predictive 

analytics and performed state-of-the-art results in many 

situations. Without tedious and complex feature engineering, 

deep learning can be effectively and efficiently applied to 

different data formats and draw relatively accurate 

predictions in an end-to-end way compared to other methods.  

Even though the exciting breakthrough brought by deep 

learning for predictive maintenance, most of the research on 

this topic mainly focuses on boosting prediction metrics of 

the proposed methods such as precision or recalling rate, 

which provide limited information to the maintenance plan 

outlining (Roy et al., 2016). A higher prediction accuracy 

may indicate a more stable and reliable alarm in practical 

applications but does not necessarily suggest helpful decision 

support. It is practical and meaningful to know how to 

address an issue rather than merely anticipate it, especially in 

dealing with a complicated system containing numerous 

variables. Under this circumstance, predictions may only be 

treated as notifications and consequently ignored by human 

operators due to restricted proactive guidance. Thus, there is 

a strong call for extending machine learning beyond predictor 

to a more engaged advisor for action recommendation and 

insightful analysis (Matyas et al., 2017). 

The mentioned main issue cannot be overcome by pure data-

driven approaches based on statistics and algorithms since 

data collected from sensors only represent low-level signal 

patterns that are hard to analyze by human beings. Thus, it is 

difficult to form useful and helpful advice or guidance for 

decision-making (Sapna et al., 2019). To address this 

challenge, knowledge of contextual information is required 

to elaborate the prediction results into high-level 

representations such as natural language or graph-structured 

data so that human beings can view them straightforwardly. 

Hence, the industry calls for a more advanced agent system 

that can generate human-understandable descriptions for 

reviewing and validation based on detected faults.  
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The critical gap lies in the missing link between sources on 

the low-level data side and the high-level knowledge side. 

In the last five years, there has been dramatic progress in the 

natural language process (NLP) because of the occurrence of 

large language models (LLMs). By pretraining a very deep 

neural network with billions of parameters on an extensive 

textual corpus, the LLMs can be multi-task learners with 

impressive performances on a wide range of tasks including 

article summarization, multilingual translation, and text 

generation. More importantly, recent research indicates the 

emergent capability of the LLMs for multi-step reasoning to 

accomplish more complex tasks without much human 

supervision and hardcore programming (Bommasani et al., 

2021).  

This exciting phenomenon indicates a solution to the 

mentioned challenge that the link can be regarded as a step-

by-step transformation workflow starting from data to 

knowledge using LLMs with proper prompts. A basic idea is 

to allow LLMs to be aware of the fault in the system at first, 

and then parse relevant search queries related to the predicted 

fault for knowledge retrieval in the database. The obtained 

search results can then be combined and summarized as a 

document for action recommendation. In this way, the LLM 

is an information fusion unit to elaborate predictions with 

information from different databases for decision support.  

According to this motivation, in this research, GPT-4, a 

popular large language model released by OpenAI (OpenAI 

et al., 2023), is applied to implement the above idea. The 

agent is built upon a fault classification model and external 

knowledge databases for the retrieval-augmented generation 

of the system maintenance support documentation. In 

addition, a use case on linear actuator fault diagnosis will be 

conducted for proof-of-concept verification. In summary, the 

contribution of the paper can be summarized as: 

Develop an agent for linking prediction results with the 

knowledge base to generate descriptions for maintenance 

decision-support based on the large language model. 

The remaining of the paper is organized in the following 

structure. In section two, some related work of this research 

will be presented for a preliminary introduction to the critical 

concept used in the proposed method. In section three, the 

system diagram and the framework will be illustrated in detail 

including the principles and workflow of the method. Then, 

there is a use case for linear actuator fault diagnosis will be 

conducted and experiments will be carried out to first show 

the effectiveness of methods for fault detection without extra 

training and fine-tuning. After that, another experiment will 

show how the LLMs can output a more context-related 

conclusion for a more satisfactory decision support delivery 

based on predictions. 

2. RELATED WORK 

 

2.1. Random Convolution Kernel Transformation 

(ROCKET) for Time Series Classification 

For system state monitoring, multiple sensors will be 

installed on an asset to record a series of time-ordered data 

points during the system running. The collected time series 

will vary when the equipment works under different 

conditions, conversely, the time sequence data can represent 

in what situation the system is working and suggest what 

potential fault will probably be. To build the relationship 

between the time sequence with the corresponding system 

state, a classifier is the most effective way to implement, and 

this task is called Time Series Classification (TSC). It is one 

of the basic and essential time series mining that aims to 

assign unseen samples with labels in the training data by 

pattern exploitation. With TSC, a real-time collected time 

series can be categorized into states for a quick diagnosis. 

Therefore, the TSC is vital and commonly blind tightly to the 

industrial Internet of Things (IoT) for automatic system fault 

detection.  

However, it is a challenge to apply conventional statistical or 

machine learning methods for the TSC. The main reason is 

the continuity property of the sequence of observable data 

points along time. Unlike textual data, which can be 

discretized by a set of sub-words (tokens) for processing, it is 

difficult to figure out the proper segmentation and 

transformation of the given time series for dimensionality 

reduction. This will cause an issue called the ‘curse of 

dimensionality’ and the model will be hard to recognize and 

capture discriminative features in the data for categorization. 

There are fruitful results in TSC (Faouzi, n.d., 2022). 

Baseline methods such as K-nearest neighbors (KNN) 

classification with dynamic time warping (DTW), the bag-of-

pattern method (BoP), and the remarkable ensemble classifier 

HIVE-COTE are proposed for this purpose, but they suffer 

from heavy computation and memory usage. Approaches 

based on deep learning such as recurrent neural network 

(RNN), InceptionTime (Fawaz et al., 2019), and relatively 

new Transformer-based models (Nie et al., 2022) are 

becoming popular. Although these methods boosted the 

accuracy and are able to generalize to different datasets 

compared to traditional machine learning, the model has to 

be trained to optimize parameters for inference which are 

either time-consuming or resource-intensive. Even worse, all 

the deep learning methods require retraining when samples 

are out of training data leading to a low extendibility in 

industrial applications.  

To address these challenges, random convolution kernel 

transformation, short for ROCKET, was proposed to 

transform the time series into a vector representation using a 

random convolution kernel for classification (Dempster et al., 

2019). Unlike conventional convolutional neural networks 

(CNN), parameters in the ROCKET are generated randomly 

and require no optimization or fine-tuning during the data 

transformation. Without an iterative learning process, the 
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ROCKET is efficient in computation and can adapt to 

different time sequences. Also, the ROCKET combined with 

traditional classification models such as the 1-NN classifier, 

support vector machine (SVM), and ridge classifier can 

achieve or even exceed state-of-the-art TSC algorithms with 

lightweight computation in an endurable timespan.  

Therefore, considering the computational efficiency, 

extendibility, and performance, the ROCKET will be applied 

as the method for time series processing in this project. Using 

ROCKET as an encoder for the time series classification, the 

vectorization result will be processed and recognized by the 

LLMs to outline the prescription. 

2.2. Retrieval-Augmented Generation (RAG) 

Research on the application of LLMs in various workflow 

automation is conducted to unleash the power of LLM’s 

human-like logical reasoning and inference capability. 

However, one of the main challenges comes in the 

hallucination issue of the LLMs. It means that the fake or 

incorrect information will be generated by LLMs. This can 

cause failure in task performance and may hurt the 

trustworthy between humans and the LLMs when they are in 

cooperation (Huang et al., 2023). 

An effective approach for alleviating the hallucinating issue 

is to enable the LLMs to generate their responses based on 

some factual evidence from other existing sources such as the 

internet or knowledge databases. According to the retrieved 

information, the LLMs can follow the requirements and 

instructions given in the prompt to compile information that 

is rooted in ground truth and users’ demands. It combines the 

searching techniques and the generation ability of LLMs to 

offer reliable and user-friendly information to people. This 

concept is defined as retrieval-augmented generation (RAG). 

The RAG has successfully been used in text, image, and 

multimodality searching and generation, but the application 

in the time series analysis on industrial sensor networks is yet 

fully explored. This piece of research is an initial exploration 

of applying the same idea for time series classification and 

allowing the LLM can generate the document based on the 

prediction to mitigate the hallucinations. In this research, the 

RAG will be the main methodology for retrieving historical 

time series samples to label the newly arrived data as a 

prediction outcome. The fault analysis can then be generated 

based on the retrieved result by the LLM. 

2.3. Prompting Engineering, Chaining, and LLMs Agent 

To obtain desirable outcomes from the LLMs, it is crucial to 

craft proper instructions for model commanding, and this 

concept is referred to as prompt engineering. Depending on 

the emergent capability, the LLMs can generate responses 

following descriptions in the prompts, and this is an effective 

way to alleviate the hallucination issue. Despite the 

usefulness, it is also cumbersome to tune the proper prompt 

to get satisfactory outcomes in a trial-and-error way.  

Instead of composing zero-shot prompts fully manually for 

LLMs to arrive at solutions immediately, (Wei et al., 2022) 

proposed chain-of-thought prompting that breaks down 

complex tasks into sequential sub-tasks and encourages the 

LLMs to figure out answers to each problem. By doing this, 

the LLMs can enhance their ability to successfully carry out 

intricate tasks such as math reasoning and arithmetic 

computations. In addition, (Yao et al., 2022) developed the 

ReAct prompting to enable LLMs to incorporate external 

tools usage and observation results obtained after tools 

leverage into their reasoning activity. The experiment 

indicated an apparent improvement in performance for LLMs 

on interactive text-based games and online shopping tasks as 

compared to traditional imitation learning or reinforcement 

learning approaches. 

Furthermore, multiple prompts for different purposes can be 

serialized into a chain for workflow automation. Building on 

this advantage, the concept of the LLM agent, or AI agent, 

emerges to facilitate more functional applications of LLMs 

across diverse domains. The fundamental principle is to treat 

the LLMs as a connector or a controller among toolsets 

including databases, calculators, and web browsers to 

produce a series of actions based on their logical reasoning. 

In each step, LLMs can yield more reliable intermediary 

results and merge findings from prior stages to aggregate a 

more solid outcome in the final. Moreover, users can monitor 

the problem-solving process and understand the rationale 

provided by the agent, offering an opportunity for human 

intervention via a natural language interaction. Preliminary 

successful implementations of the LLMs agent in various 

fields are illustrated in (Xi et al., 2023).  

3. DESIGN OF THE CONTEXT-AWARENESS AGENT  

3.1. Initial Analysis 

To compile a report of fault diagnosis with fault type, fault 

description, and potential recovery or maintenance strategies, 

 
(a) 

 

 
(b) 

Figure 1. Different methods to convert predictions to 

descriptions (a). End-to-end generation (b). Multi-step 

transformation with the LLM 
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a direct way, as shown in Figure 1. (a), is to define a rule-

based system that allows the prediction to go through and 

route to a corresponding solution. Or to craft a dataset of 

prediction-solution pairs to train a model for transformation. 

However, defining rules and collecting datasets manually are 

human-labor intensive and time-consuming. Also, the 

predefined rule-based system or model is hard to update and 

extend to unseen situations. From this perspective, end-to-

end generation may be friendly in the development stage but 

may be challenging to maintain when the model or the system 

has been deployed in the production environment in 

industrial environments due to low adaptability to a 

dynamically evolving situation. 

Another way to consider this problem is to divide the 

transformation into a series of steps with the LLM, external 

database, and tools (usually a bunch of calling Application 

Programming Interface), as shown in Figure 1. (b). After 

receiving the prediction from the data processing step, LLM 

will be asked to recognize the fault based on the prediction 

result and try to reason about what problem should be solved 

based on providing the contextual background described in 

the documentation. The generated search queries will then be 

thrown to a database by LLM’s tools calling capabilities to 

retrieve relevant information on repairing suggestions. 

Finally, the LLM can be instructed to summarize all 

information into a report for human beings to review. 

In this way, the workflow can be independent of a fixed set 

of rules and ensure contextual information is involved in the 

final description generation. In each step, human operators 

can track and offer comments or feedback to inject their 

expertise into the agent by providing prompting to get a more 

comprehensive result. The essential idea of the proposed 

method is the multi-step generations based on factual 

evidence, which is the core idea of the RAG. In the following 

section, the details of the agent system will be illustrated. 

3.2. Overview of the Agent System 

The diagram of the agent system is illustrated in Figure 2. A 

set of historical data will be transformed into a set of vectors 

and stored in memory for comparison. The method for 

sample vectorization is the ROCKET as introduced in the 

above section. In detail, several randomly generated 

convolution operators will slide the input time series to 

conduct dot product computation. In mathematics, according 

to the paper (Dempster et al., 2019), the outcome from 

implementing a kernel, w, with dilution, d, and bias b, on a 

specific set of time series X from position i in 𝑋𝑖 is presented 

as follows: 

𝑋𝑖 ∗ 𝑤 = (∑ 𝑋𝑖+(𝑗×𝑑) × 𝑤𝑗
𝑙𝑘𝑒𝑟𝑛𝑒𝑙−1
𝑗=0 ) + 𝑏            (1) 

A feature map M will be obtained from the kernel 

computation, and two real values will be extracted as features 

for each kernel including the maximum values and the 

proportion of positive values (ppv) in the M by the following 

formula: 

𝑝𝑝𝑣(𝑀) =
1

𝑛
∑ [𝑚𝑖 > 0]𝑛−1
0                        (2) 

Where 𝑚𝑖  is the numerical value in the feature map. 

Therefore, there will be two features produced per kernel 

operation, and for an effective time series representation, 

10000 kernels are used to transform the data leading to 20000 

features to represent each time series. The ROCKET 

algorithm is applied to all samples in the historical database 

which will be stored for retrieval. Since there is no parameter 

optimization and fine-tuning during the data processing, the 

computational efficiency can be extremely fast compared to 

 

Figure 2. The diagram of the agent system 
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deep learning or other statistical methodologies. Therefore, 

the requirement on hardware configuration is much lower 

enabling a constant vectorization of new samples as 

experience accumulation. 

When an unlabeled sample comes, it will also be transformed 

into a vector or said embedding and compute the Euclidean 

distance among all embedded samples in the vector store. 

After sorting based on distance, the most similar records will 

be considered as the target and the label will be assigned to 

the new data for classification result. For a common RAG 

implementation, in each retravel, the first five similar, or said 

the top-5 similar records will be extracted to promise a high 

hitting rate. In this agent system, top-5 retrieval is applied. 

In the next step, the top-5 similar retrieval results will be fed 

to the LLM with a prompt to warp the prediction with 

contextual information including background introduction, 

technical details, and the system configuration to form a fault 

diagnosis statement in the following format: 

Retrieval results: [‘fault type1’, ‘fault type2’, …, ‘fault type5’] 

Diagnosis results: [‘fault type’] 

Inference evidence: [fault type1 with <score1>, …] 

Description of the Fault: This state indicates that… 

In this compact diagnosis report, retrieval results will be 

shown, and the classification is presented as ‘fault type’. In 

addition, inference evidence is the list of scores of the 

retrieval. In this case, the Euclidean distance is used for an 

interpretable purpose so that people can understand how the 

system gets the result. The more similarity between the 

unlabeled one and the records, the smaller the Euclidean 

distance will be. The description of the fault is summarized 

in the given document to explain to human operators clearly 

what is happening in the system with plain natural language. 

In the next step, the brief statement is fed back to the LLM 

later and the fault type will be recognized for parsing the 

query for searching the database. For example, if the detected 

fault is ‘spalling’ on a ball-screw actuator given in the 

statement, the LLM can generate highly related several 

searching strings: 

• How to recover spalling damage in ball-screw actuators? 

• What are replacement options for ball-screw actuators 

with spalling damage? 

• Replacement options for ball-screw actuators with 

spalling damage. 

• Diagnosing spalling in linear actuators for effective 

maintenance. 

These questions are then used for matching contents in a 

database, for instance, a general knowledge base e.g. 

Wikipedia, or a specific expert system with the tool usage 

capability of the LLM. All the obtained information will be 

summarized to direct maintenance suggestions and action 

recommendations in the final step.  

4. USE CASE ON LINEAR ACTUATOR FAULT DIAGNOSIS  

4.1. Experimental Setup 

The time series data1 is collected on a linear actuator system 

reported in the paper (Ruiz-Carcel & Starr, 2018). The 

detailed description including the mechanical components, 

structure, and parameters of configuration are all illustrated 

clearly in the article. This paper will not fully reintroduce the 

actuator system. The dataset acquired during the testing is the 

starting point of the introduction to the agent system 

application use case.  

 At first, the rig was operated under typical working 

conditions without any malfunctions to gather a substantial 

volume of data that represents the system’s behavior under 

varying loads and motion patterns. Two distinct motion 

profiles were examined: 

• Trapezoidal profile with a constant speed set point 

• Sinusoidal profile with a smooth transition speed 

In this paper, only data under the trapezoidal profile is 

considered for simplicity, the utilization of multiple profiles 

can be taken into account in future upgrades. The trapezoidal 

profile is tested for normal and faulty conditions under three 

distinct load scenarios: 20kgf, 40kgf, and -40kgf. The full 

motion sequence was repeated 5 times in one working 

situation under a load as one test. Each test will be conducted 

10 times repetitively to generate a dataset with an adequate 

amount of observation in each case studied. a total of 50 

samples, in every scenario analyzed. Furthermore, three 

distinct mechanical flaws in different degradation levels were 

intentionally introduced into various portions of the system 

to simulate modes typically experienced by these types of 

machines. The faults of the system in this dataset include: 

• Spalling from level 1 to level 8 (8 states) 

• Lack of lubrication from level 1 to level 2 (2 states) 

• Backlash from level 1 to level 2 (2 states) 

In short, including the normal and all other flaw states, there 

are 13 different types and 650 samples in each load 

circumstance leading to a total of 1950 samples. For 

evaluation, 20% of all samples will be randomly selected to 

form a testing dataset, and the remaining samples will be used 

for constructing the vector store as introduced in section 3.2.  

4.2. Implementation 

For analysis, samples under all 13 flaws in each load can be 

visualized in Figure 3 and Figure 4 after using the moving 

average smoothing with the window size 20 and 15 

respectively reported in the paper (Ruiz-Carcel & Starr, 
1.The dataset can be found on the link: 

https://cord.cranfield.ac.uk/articles/dataset/Data_set_for_Data-

based_Detection_and_Diagnosis_of_Faults_in_Linear_Actuators_/5097649 
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2018). As shown in Figure 3, no matter in which situation, 

the position error signals in each fault are distributed too 

close to be separated from others, while the pattern of current 

signals is more distinguishable. Therefore, the current signal 

is the univariant for time series processing in this use case. 

Then the univariant time series will be transformed into a 

vector representation using the ROCKET. To further improve 

the computational efficiency, a trick from the variant of the 

ROCKET, namely MiniROCKET (Dempster et al., 2020), is 

applied. The main difference is that the kernel length usage 

is fixed to 9, instead of randomly selected from choices {7, 9, 

11} in the original ROCKET. By doing this, it can make the 

result more deterministic. In this use case, the ROCKET is 

implemented with the Python package called Pyts (Faouzi & 

Janati, 2020). 

Then the vector consisting of features computed from each 

kernel (20000 dimensions) will be stored together as a vector 

database for retrieval. 

During the validation, prediction accuracy will be tested in 

three different loading conditions individually and the 

average value will also be computed. For the diagnosis report 

Figure 3. Position error (mm) signals in different fault 

states under three load conditions after smoothing. (a) 

20kgf (b) 40kgf (c) -40kgf  

 
(a) 

 
(b) 

 
(c) 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Current (A) signals in different fault states under 

three load conditions after smoothing. (a) 20kgf (b) 40kgf 

(c) -40kgf  
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generation, given a loading, randomly select a sample from 

the testing dataset to review the fault statement and the 

relativity between the generated recommendations and the 

fault type.   

4.3.  Results 

To summarize the results of the experiment, different 

methods for the classification based on the ROCKET features 

with Euclidean distance metric are listed in Table 1. The 

comparison between the proposed fault detection method is 

compared with the performance of the strong deep learning 

baseline method, the InceptionTime. There is an obvious gap 

between the top-1 precision based on the ROCKET 

vectorization and the baseline algorithm, only around 60% on 

average versus the InceptionTime, which is more than 80% 

over three loading circumstances. However, the 

computational time can be cut down dramatically by the 

ROCKET method. For the same historical dataset, for 

instance, using all 520 samples under 20kg, the result can be 

obtained with CPU (i7-12700H @3.30Hz) for about 25 

seconds, while using the InceptionTime with 100 training 

epochs, the prediction drawn from scratch requires more than 

60 seconds on GPU (Nvidia GeForce RTX 3060 Laptop 

GPU). Even though the deep learning model can quickly 

conclude after training, the parameters are fixed once the 

training is done. When out-of-distribution samples come, the 

model requires to be updated without forgetting previously 

obtained knowledge. Retraining or fine-tuning the model in 

this way is still an ongoing research topic. In contrast, using 

the ROCKET with the distance-based metric retriever, new 

samples can be encoded in nearly real-time to query existing 

vector databases to get the results. Thus, it shows the 

potential of on-the-fly data processing capability in industrial 

applications.   

One way to further improve the classification accuracy is the 

incorporation of the ridge or logistic classifiers which can 

reach a better prediction outcome. As shown in Table 1, the 

ROCKET feature with the ridge classifier can even surpass 

InceptionTime in terms of prediction accuracy under the load 

of 40kg. In addition, an alternative approach is to use a top-5 

retriever. By doing this, when one of the retrieved samples 

indicates the correct label, the prediction can be treated as 

correct. It can obviously boost the prediction accuracy (up to 

85%) compared to any other top-1 classifiers, while with the 

cost of bringing the noise and uncertainty by considering 

more historical samples. Some types of faults may have 

highly similar patterns in the time series data, resulting in 

their simultaneous extraction as targets in the retrieval 

process. For instance, the ‘spalling2’ sequence can 

potentially retrieve ‘spalling1’ or ‘normal’ records from the 

vector database because their shapelets share great 

similarities. More importantly, this kind of uncertainty is 

usually unknown when deploying the system into the real 

production environment and delivering imprecise 

information to the users.  

This problem can be addressed by refining the fault in a 

prompt in the brief fault diagnosis statement generation using 

the LLM. This is meaningful, as in real-life scenarios, system 

degradation occurs gradually and may not have a clear 

boundary or change in different malfunctions from a macro 

perspective. Therefore, two similar types of faults such as 

‘spalling1’ and ‘spalling2’ may have nearly identical effects 

to the system and appear to have the same level of 

degradation. Thus, they can be regarded as the same fault 

type when proposing maintenance suggestions in practice. By 

reassigning these faults with a shared label in the prompt for 

the LLM, we can shrink the noise introduced by the top-5 

retriever and take practical considerations into account while 

generating maintenance suggestions, which will make them 

more useful and accurate in real-life situations. This is the 

first step towards integrating realistic contextual information 

into the fault diagnosis process, making it more reliable and 

practical. 

After getting the refined fault labels, the LLM (in this case, 

the GPT-4) can be instructed for multiple query generation, 

database retrieval, and the final summarization with 

handcrafting prompts step-by-step as illustrated in Figure 2 

(The completed prompt can be found in the project repository 

listed in the Appendix). This can compile the final diagnostic 

report for converting the classification result to an actionable 

plan. Also, the Google Chrome web browser is selected as a 

general knowledge base used for query searching in this 

proof-of-concept verification. As a result, Figure 5 shows a 

part of the generated document indicating that the GPT-4 can 

give context-aware suggestions to a detected fault. 

5. DISCUSSIONS AND FUTURE WORK 

The use case successfully demonstrates the feasibility of 

applying the LLM to convert the single prediction to the 

Method 20kg 40kg -40kg Average 

InceptionTime (with 100 epochs) 83.8462% 86.0465% 79.2308% 83.0412% 

ROCKET + top-1 retriever 63.0769% 75.1938% 46.1538% 61.4748% 

ROCKET + ridge classifier 80.7692% 82.1705% 83.0769% 82.0055% 

ROCKET + top-5 retriever 83.0769% 91.4729% 81.5385% 85.3628% 

 

Table 1. Fault classification accuracy under 20kgf, 40kgf, and -40kgf loading situations with different methods. 
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prescription of repairing and reconditioning strategies for 

maintenance decision support. Without any extra training or 

fine-tuning, and no requirement on manual feature 

engineering, dataset construction, and rule-based system 

definition, the LLM can automatically link different (public 

or private) knowledge sources to compile a reasonable 

solution after the fault diagnosis based on humans’ intention. 

Therefore, it improves the functionality of current machine 

learning as a more proactive and user-friendly production for 

industrial applications. In addition to the work presented in 

this paper, there are a few interesting directions that can be 

explored in the future.  

From Univariant to Multivariant: In this study, only 

univariant time series (the current signal) is considered for 

the ROCKET feature construction, while the data related to 

position error has been ignored due to the similar shape 

patterns in the time domain. This raises the question of how 

to incorporate multiple time series patterns into the vector 

store section for fault diagnosis. The ROCKET can be 

extended to process multivariant time series, and it is a 

candidate update to the proposed agent system with this 

capability. In addition, all the introduced methods are in the 

time domain, how to integrate information from the 

frequency domain into the proposed framework is another 

question. By doing this, the time series can be analyzed from 

different points of view and construct more distinguishable 

features for retrieval with less amount of data.     

From Suggestion to Automation: The report generated after 

the workflow is expected to offer assistance to people in 

maintenance planning. A further idea is to explore how to 

Retrieval results: ['spalling7_40_1_5', 'spalling7_40_9_3', 'spalling7_40_10_4', 'spalling7_40_7_3', 'spalling7_40_10_2']  
Diagnosis results: Refined fault type1: Obvious fault in spalling 

Inference evidence: [spalling7_40_1_5 with 3.1987850822921007, spalling7_40_9_3 with 3.772884271423856, spalling7_40_10_4 with 

3.989529120390713, spalling7_40_7_3 with 4.239072661571159, spalling7_40_10_2 with 4.822921558144848] 
Description of the Fault: This state indicates that the ball-screw mechanism within the actuator has significant surface damage. This level of spalling 

affects the actuator's smoothness and efficiency severely. The presence of such a fault suggests that the actuator's performance and longevity are 

compromised, necessitating immediate attention and likely repair or replacement to restore normal operation. 
 

Searching for: 

how to repair spalling damage in ball-screw actuators 
best practices for preventing spalling in linear actuators. 

replacement options for ball-screw actuators with spalling damage 
diagnosing spalling in linear actuators for effective maintenance 

cost-effective solutions for spalling damage in actuator mechanisms 

 
Searching results: 

Reconditioning the Actuator's Ball Screw: This involves repairing and/or replacing worn or damaged internal components of the actuator. 

Replacing Cover Bands: When necessary, the cover bands should be replaced to ensure the proper functioning of the actuator. 

Addressing Premature Flaking or Abnormal Damage: This may include looking for the cause of the problem, such as careless handling, excessive 

misalignment, or insufficient lubrication, and taking measures to prevent machine failure. 

Checking for Damage: It is crucial to check for metal fragments that can indicate broken parts and could cause further damage. Also, inspect ball nut 
threads for damage and replace them if necessary. 

Troubleshooting and Countermeasures: Check for specific damage conditions like the raceways of the screw shaft and ball nut and/or the surface of 

the ball peeling off like scales. Implement countermeasures based on identified causes, such as misalignment or lack of lubrication. 
Seeking Professional Help: For severe damage or complex repairs, consulting with or hiring a professional service that specializes in actuator repair 

might be beneficial. Emergency repair teams can restore damaged ball screws and actuators when time is critical. 

Observing Safety and Proper Procedures: Always follow safe handling practices and the manufacturer's instructions to minimize the risk of further 
damage during the repair process. 

… 

 
Repair and Reconditioning Strategies 

To address immediate damage and restore functionality, the following steps are vital: 

Ball Screw Reconditioning: Essential for repairing or replacing the internal parts of the actuator to improve functionality. 
Cover Bands Replacement: Required when these components are damaged to maintain efficiency. 

Addressing Underlying Causes: Investigating and rectifying root causes like misalignment or insufficient lubrication to prevent recurrence. 

Damage Inspection: Identifying broken parts through inspection is crucial for preventing further damage. 

Implementing Countermeasures: Specific damage conditions should be examined and addressed accordingly, emphasizing the correction of 

misalignment and proper lubrication. 

Professional Consultation: Seeking expert advice is recommended for complex or severe damages. 
Safe Handling and Procedure Adherence: Following manufacturer guidelines and safe practices is imperative throughout the repair process. 

… 

 
In summary, the effective management of spalling in balls crew actuators involves a balanced approach of timely and appropriate repairs, adherence to 

best practices for prevention, and the consideration of replacement when necessary. The combination of condition-based maintenance and leveraging 

cost-effective technological solutions plays a crucial role in enhancing the longevity and reliability of these actuators, ultimately ensuring their optimal 
performance in various applications. 

 

Figure 5. A partial piece of an example document for the randomly selected ‘spalling7’ fault. 
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connect the decision with the action to automate the entire 

maintenance process from fault detection and identification 

to system recovery and reconfiguration. A quick idea is to 

extend the sequentialization of prompts till to execution stage 

by incorporating external application programming 

interfaces (APIs) to directly link to actuators for the system 

maintenance. Recent relevant research is conducted for this 

purpose such as code-as-policy (Liang et al., 2023). In this 

way, it is exciting to develop an automated agent that can be 

self-awareness, self-decision, and self-action to the system 

health management without too much human intervention. 

However, it is also important to note that the verification and 

evaluation from the human side are critical to ensure the final 

action satisfies all practical and aesthetic requirements in 

production environment. How the agent can learn from 

human feedback to further align their performance with our 

expectations and values is a critical consideration for this 

direction. 

From Ad-hoc Prompting to Long-Term Memory: The 

prompts used in this paper are yet fully automatically 

generated. Handcrafting is still needed during the prompting 

process. For every generation, the GPT-4 should reload all 

information from scratch and provide suggestions merely 

limited to the information written in the prompt. Hence, the 

agent cannot view and refer to any of previous diagnostic 

reports to improve its performance and keep accumulating 

experience for future analysis. Some studies show that if an 

agent can learn from the contents generated by itself, after 

self-learning on these contents, the performance may 

improve and even exceed the human level. AlphaGo, for 

instance, can self-play with enormous virtual games by itself 

and eventually defeat top-ranked human players (Silver et al., 

2017). A further question is whether this similar idea can be 

applied to the agent. If the prompting and previous diagnosis 

reports can be stored in long-term memory and retrieved for 

new situations by the agent itself. It is possible to let the agent 

itself to prompt itself automatically with lower human 

supervision. This can cut down the requirement of human 

knowledge and computation time. Also, it can increase the 

likelihood of producing more optimal solutions that people 

have yet to conceive. 

From the Given Knowledge Base to Self-Exploration: It is 

noticeable that automation is built upon a human-defined 

logic written in prompts. Thus, the basis of automation still 

relies much on human labor and insight. More importantly, 

the knowledge base for agent retrieval is also created and 

mainly maintained by human beings, thus, heavily restricting 

the potential of machine knowledge discovery. It is then 

followed by a question of how to allow the machine to 

acquire knowledge with the self-exploring capability to 

discover new methods to alleviate human bias and errors in 

maintenance tasks. Furthermore, it is fascinating to 

investigate how to enable the agent to contribute to the 

existing knowledge with human beings together for 

knowledge acquisition in the system health management 

domain. 

6. CONCLUSION 

This paper presents an LLMs agent-based method for 

elaborating predictions from machine learning to actionable 

strategy descriptions for maintenance decision support. A use 

case of linear actuator fault diagnosis is studied with an agent 

built upon ROCKET time series representation, the concept 

of RAG, and the prompts chaining technique. By prompting 

engineering, the LLM agent can recognize the fault and parse 

highly relevant queries to the database using a search tool, (in 

this case, the Google Chrome web browser), and summarize 

the retrieval results to report to human operators. The study 

demonstrates the possibility of constructing autonomous 

agents for proactive decision assistance without much human 

supervision and training and shows how current LLMs can 

be integrated into the industrial workflow. 
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APPENDIX 

The code for this project can be found on the link: 

https://github.com/BlueAsuka/Rocket-RAG 
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