
 1

From Prediction to Prescription: Large Language Model Agent for

Context-Aware Maintenance Decision Support

Haoxuan Deng1, *, Bernadin Namoano1, Bohao Zheng1, Samir Khan1, and John Ahmet Erkoyuncu1

1School of Aerospace, Transportation and Manufacturing, Cranfield University, Bedford, MK43 0AL, UK

{haoxuan.deng, bernadin.namoano, bohao.zheng, samir.s.khan, j.a.erkoyuncu}@cranfield.ac.uk

ABSTRACT

Predictive analytics with machine learning approaches has

widely penetrated and shown great success in system health

management over the decade. However, how to convert the

prediction to an actionable plan for maintenance is still far

from mature. This study investigates how to narrow the gap

between predictive outcomes and prescriptive descriptions

for system maintenance using an agentic approach based on

the large language model (LLM). Additionally, with the

retrieval-augmented generation (RAG) technique and tool

usage capability, the LLM can be context-aware when

making decisions in maintenance strategy proposals

considering predictions from machine learning. In this way,

the proposed method can push forward the boundary of

current machine-learning methods from a predictor to an

advisor for decision-making workload offload. For

verification, a case study on linear actuator fault diagnosis is

conducted with the GPT-4 model. The result demonstrates

that the proposed method can perform fault detection without

extra training or fine-tuning with comparable performance to

baseline methods and deliver more informatic diagnosis

analysis and suggestions. This research can shed light on the

application of large language models in the construction of

versatile and flexible artificial intelligence agents for

maintenance tasks.

1. INTRODUCTION

Predictive analytics for product health management has

attracted increasing attention from the industry with the rise

of machine learning in the last decade. With the advent of

advanced data processing and statistics methods, features and

patterns of the system's running state can be captured from

historical logs and sensor data. By doing this, potential

system failure can be forecasted and allow people to outline

the plan for maintenance or adjustment in advance of system

deterioration. This can not only prolong the lifespan of the

system but also lead to lower costs of periodic checking and

overhauls in traditional preventive and reactive maintenance

(Zonta et al., 2020).

Since the 2010s, deep learning that builds upon artificial

neural networks (ANNs) played an essential role in predictive

analytics and performed state-of-the-art results in many

situations. Without tedious and complex feature engineering,

deep learning can be effectively and efficiently applied to

different data formats and draw relatively accurate

predictions in an end-to-end way compared to other methods.

Even though the exciting breakthrough brought by deep

learning for predictive maintenance, most of the research on

this topic mainly focuses on boosting prediction metrics of

the proposed methods such as precision or recalling rate,

which provide limited information to the maintenance plan

outlining (Roy et al., 2016). A higher prediction accuracy

may indicate a more stable and reliable alarm in practical

applications but does not necessarily suggest helpful decision

support. It is practical and meaningful to know how to

address an issue rather than merely anticipate it, especially in

dealing with a complicated system containing numerous

variables. Under this circumstance, predictions may only be

treated as notifications and consequently ignored by human

operators due to restricted proactive guidance. Thus, there is

a strong call for extending machine learning beyond predictor

to a more engaged advisor for action recommendation and

insightful analysis (Matyas et al., 2017).

The mentioned main issue cannot be overcome by pure data-

driven approaches based on statistics and algorithms since

data collected from sensors only represent low-level signal

patterns that are hard to analyze by human beings. Thus, it is

difficult to form useful and helpful advice or guidance for

decision-making (Sapna et al., 2019). To address this

challenge, knowledge of contextual information is required

to elaborate the prediction results into high-level

representations such as natural language or graph-structured

data so that human beings can view them straightforwardly.

Hence, the industry calls for a more advanced agent system

that can generate human-understandable descriptions for

reviewing and validation based on detected faults.

First Author (Haoxuan Deng) et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution 3.0

United States License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are
credited.

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 478

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

2

The critical gap lies in the missing link between sources on

the low-level data side and the high-level knowledge side.

In the last five years, there has been dramatic progress in the

natural language process (NLP) because of the occurrence of

large language models (LLMs). By pretraining a very deep

neural network with billions of parameters on an extensive

textual corpus, the LLMs can be multi-task learners with

impressive performances on a wide range of tasks including

article summarization, multilingual translation, and text

generation. More importantly, recent research indicates the

emergent capability of the LLMs for multi-step reasoning to

accomplish more complex tasks without much human

supervision and hardcore programming (Bommasani et al.,

2021).

This exciting phenomenon indicates a solution to the

mentioned challenge that the link can be regarded as a step-

by-step transformation workflow starting from data to

knowledge using LLMs with proper prompts. A basic idea is

to allow LLMs to be aware of the fault in the system at first,

and then parse relevant search queries related to the predicted

fault for knowledge retrieval in the database. The obtained

search results can then be combined and summarized as a

document for action recommendation. In this way, the LLM

is an information fusion unit to elaborate predictions with

information from different databases for decision support.

According to this motivation, in this research, GPT-4, a

popular large language model released by OpenAI (OpenAI

et al., 2023), is applied to implement the above idea. The

agent is built upon a fault classification model and external

knowledge databases for the retrieval-augmented generation

of the system maintenance support documentation. In

addition, a use case on linear actuator fault diagnosis will be

conducted for proof-of-concept verification. In summary, the

contribution of the paper can be summarized as:

Develop an agent for linking prediction results with the

knowledge base to generate descriptions for maintenance

decision-support based on the large language model.

The remaining of the paper is organized in the following

structure. In section two, some related work of this research

will be presented for a preliminary introduction to the critical

concept used in the proposed method. In section three, the

system diagram and the framework will be illustrated in detail

including the principles and workflow of the method. Then,

there is a use case for linear actuator fault diagnosis will be

conducted and experiments will be carried out to first show

the effectiveness of methods for fault detection without extra

training and fine-tuning. After that, another experiment will

show how the LLMs can output a more context-related

conclusion for a more satisfactory decision support delivery

based on predictions.

2. RELATED WORK

2.1. Random Convolution Kernel Transformation

(ROCKET) for Time Series Classification

For system state monitoring, multiple sensors will be

installed on an asset to record a series of time-ordered data

points during the system running. The collected time series

will vary when the equipment works under different

conditions, conversely, the time sequence data can represent

in what situation the system is working and suggest what

potential fault will probably be. To build the relationship

between the time sequence with the corresponding system

state, a classifier is the most effective way to implement, and

this task is called Time Series Classification (TSC). It is one

of the basic and essential time series mining that aims to

assign unseen samples with labels in the training data by

pattern exploitation. With TSC, a real-time collected time

series can be categorized into states for a quick diagnosis.

Therefore, the TSC is vital and commonly blind tightly to the

industrial Internet of Things (IoT) for automatic system fault

detection.

However, it is a challenge to apply conventional statistical or

machine learning methods for the TSC. The main reason is

the continuity property of the sequence of observable data

points along time. Unlike textual data, which can be

discretized by a set of sub-words (tokens) for processing, it is

difficult to figure out the proper segmentation and

transformation of the given time series for dimensionality

reduction. This will cause an issue called the ‘curse of

dimensionality’ and the model will be hard to recognize and

capture discriminative features in the data for categorization.

There are fruitful results in TSC (Faouzi, n.d., 2022).

Baseline methods such as K-nearest neighbors (KNN)

classification with dynamic time warping (DTW), the bag-of-

pattern method (BoP), and the remarkable ensemble classifier

HIVE-COTE are proposed for this purpose, but they suffer

from heavy computation and memory usage. Approaches

based on deep learning such as recurrent neural network

(RNN), InceptionTime (Fawaz et al., 2019), and relatively

new Transformer-based models (Nie et al., 2022) are

becoming popular. Although these methods boosted the

accuracy and are able to generalize to different datasets

compared to traditional machine learning, the model has to

be trained to optimize parameters for inference which are

either time-consuming or resource-intensive. Even worse, all

the deep learning methods require retraining when samples

are out of training data leading to a low extendibility in

industrial applications.

To address these challenges, random convolution kernel

transformation, short for ROCKET, was proposed to

transform the time series into a vector representation using a

random convolution kernel for classification (Dempster et al.,

2019). Unlike conventional convolutional neural networks

(CNN), parameters in the ROCKET are generated randomly

and require no optimization or fine-tuning during the data

transformation. Without an iterative learning process, the

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 479

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

3

ROCKET is efficient in computation and can adapt to

different time sequences. Also, the ROCKET combined with

traditional classification models such as the 1-NN classifier,

support vector machine (SVM), and ridge classifier can

achieve or even exceed state-of-the-art TSC algorithms with

lightweight computation in an endurable timespan.

Therefore, considering the computational efficiency,

extendibility, and performance, the ROCKET will be applied

as the method for time series processing in this project. Using

ROCKET as an encoder for the time series classification, the

vectorization result will be processed and recognized by the

LLMs to outline the prescription.

2.2. Retrieval-Augmented Generation (RAG)

Research on the application of LLMs in various workflow

automation is conducted to unleash the power of LLM’s

human-like logical reasoning and inference capability.

However, one of the main challenges comes in the

hallucination issue of the LLMs. It means that the fake or

incorrect information will be generated by LLMs. This can

cause failure in task performance and may hurt the

trustworthy between humans and the LLMs when they are in

cooperation (Huang et al., 2023).

An effective approach for alleviating the hallucinating issue

is to enable the LLMs to generate their responses based on

some factual evidence from other existing sources such as the

internet or knowledge databases. According to the retrieved

information, the LLMs can follow the requirements and

instructions given in the prompt to compile information that

is rooted in ground truth and users’ demands. It combines the

searching techniques and the generation ability of LLMs to

offer reliable and user-friendly information to people. This

concept is defined as retrieval-augmented generation (RAG).

The RAG has successfully been used in text, image, and

multimodality searching and generation, but the application

in the time series analysis on industrial sensor networks is yet

fully explored. This piece of research is an initial exploration

of applying the same idea for time series classification and

allowing the LLM can generate the document based on the

prediction to mitigate the hallucinations. In this research, the

RAG will be the main methodology for retrieving historical

time series samples to label the newly arrived data as a

prediction outcome. The fault analysis can then be generated

based on the retrieved result by the LLM.

2.3. Prompting Engineering, Chaining, and LLMs Agent

To obtain desirable outcomes from the LLMs, it is crucial to

craft proper instructions for model commanding, and this

concept is referred to as prompt engineering. Depending on

the emergent capability, the LLMs can generate responses

following descriptions in the prompts, and this is an effective

way to alleviate the hallucination issue. Despite the

usefulness, it is also cumbersome to tune the proper prompt

to get satisfactory outcomes in a trial-and-error way.

Instead of composing zero-shot prompts fully manually for

LLMs to arrive at solutions immediately, (Wei et al., 2022)

proposed chain-of-thought prompting that breaks down

complex tasks into sequential sub-tasks and encourages the

LLMs to figure out answers to each problem. By doing this,

the LLMs can enhance their ability to successfully carry out

intricate tasks such as math reasoning and arithmetic

computations. In addition, (Yao et al., 2022) developed the

ReAct prompting to enable LLMs to incorporate external

tools usage and observation results obtained after tools

leverage into their reasoning activity. The experiment

indicated an apparent improvement in performance for LLMs

on interactive text-based games and online shopping tasks as

compared to traditional imitation learning or reinforcement

learning approaches.

Furthermore, multiple prompts for different purposes can be

serialized into a chain for workflow automation. Building on

this advantage, the concept of the LLM agent, or AI agent,

emerges to facilitate more functional applications of LLMs

across diverse domains. The fundamental principle is to treat

the LLMs as a connector or a controller among toolsets

including databases, calculators, and web browsers to

produce a series of actions based on their logical reasoning.

In each step, LLMs can yield more reliable intermediary

results and merge findings from prior stages to aggregate a

more solid outcome in the final. Moreover, users can monitor

the problem-solving process and understand the rationale

provided by the agent, offering an opportunity for human

intervention via a natural language interaction. Preliminary

successful implementations of the LLMs agent in various

fields are illustrated in (Xi et al., 2023).

3. DESIGN OF THE CONTEXT-AWARENESS AGENT

3.1. Initial Analysis

To compile a report of fault diagnosis with fault type, fault

description, and potential recovery or maintenance strategies,

(a)

(b)

Figure 1. Different methods to convert predictions to

descriptions (a). End-to-end generation (b). Multi-step

transformation with the LLM

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 480

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

4

a direct way, as shown in Figure 1. (a), is to define a rule-

based system that allows the prediction to go through and

route to a corresponding solution. Or to craft a dataset of

prediction-solution pairs to train a model for transformation.

However, defining rules and collecting datasets manually are

human-labor intensive and time-consuming. Also, the

predefined rule-based system or model is hard to update and

extend to unseen situations. From this perspective, end-to-

end generation may be friendly in the development stage but

may be challenging to maintain when the model or the system

has been deployed in the production environment in

industrial environments due to low adaptability to a

dynamically evolving situation.

Another way to consider this problem is to divide the

transformation into a series of steps with the LLM, external

database, and tools (usually a bunch of calling Application

Programming Interface), as shown in Figure 1. (b). After

receiving the prediction from the data processing step, LLM

will be asked to recognize the fault based on the prediction

result and try to reason about what problem should be solved

based on providing the contextual background described in

the documentation. The generated search queries will then be

thrown to a database by LLM’s tools calling capabilities to

retrieve relevant information on repairing suggestions.

Finally, the LLM can be instructed to summarize all

information into a report for human beings to review.

In this way, the workflow can be independent of a fixed set

of rules and ensure contextual information is involved in the

final description generation. In each step, human operators

can track and offer comments or feedback to inject their

expertise into the agent by providing prompting to get a more

comprehensive result. The essential idea of the proposed

method is the multi-step generations based on factual

evidence, which is the core idea of the RAG. In the following

section, the details of the agent system will be illustrated.

3.2. Overview of the Agent System

The diagram of the agent system is illustrated in Figure 2. A

set of historical data will be transformed into a set of vectors

and stored in memory for comparison. The method for

sample vectorization is the ROCKET as introduced in the

above section. In detail, several randomly generated

convolution operators will slide the input time series to

conduct dot product computation. In mathematics, according

to the paper (Dempster et al., 2019), the outcome from

implementing a kernel, w, with dilution, d, and bias b, on a

specific set of time series X from position i in 𝑋𝑖 is presented

as follows:

𝑋𝑖 ∗ 𝑤 = (∑ 𝑋𝑖+(𝑗×𝑑) × 𝑤𝑗
𝑙𝑘𝑒𝑟𝑛𝑒𝑙−1
𝑗=0) + 𝑏 (1)

A feature map M will be obtained from the kernel

computation, and two real values will be extracted as features

for each kernel including the maximum values and the

proportion of positive values (ppv) in the M by the following

formula:

𝑝𝑝𝑣(𝑀) =
1

𝑛
∑ [𝑚𝑖 > 0]𝑛−1
0 (2)

Where 𝑚𝑖 is the numerical value in the feature map.

Therefore, there will be two features produced per kernel

operation, and for an effective time series representation,

10000 kernels are used to transform the data leading to 20000

features to represent each time series. The ROCKET

algorithm is applied to all samples in the historical database

which will be stored for retrieval. Since there is no parameter

optimization and fine-tuning during the data processing, the

computational efficiency can be extremely fast compared to

Figure 2. The diagram of the agent system

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 481

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

5

deep learning or other statistical methodologies. Therefore,

the requirement on hardware configuration is much lower

enabling a constant vectorization of new samples as

experience accumulation.

When an unlabeled sample comes, it will also be transformed

into a vector or said embedding and compute the Euclidean

distance among all embedded samples in the vector store.

After sorting based on distance, the most similar records will

be considered as the target and the label will be assigned to

the new data for classification result. For a common RAG

implementation, in each retravel, the first five similar, or said

the top-5 similar records will be extracted to promise a high

hitting rate. In this agent system, top-5 retrieval is applied.

In the next step, the top-5 similar retrieval results will be fed

to the LLM with a prompt to warp the prediction with

contextual information including background introduction,

technical details, and the system configuration to form a fault

diagnosis statement in the following format:

Retrieval results: [‘fault type1’, ‘fault type2’, …, ‘fault type5’]

Diagnosis results: [‘fault type’]

Inference evidence: [fault type1 with <score1>, …]

Description of the Fault: This state indicates that…

In this compact diagnosis report, retrieval results will be

shown, and the classification is presented as ‘fault type’. In

addition, inference evidence is the list of scores of the

retrieval. In this case, the Euclidean distance is used for an

interpretable purpose so that people can understand how the

system gets the result. The more similarity between the

unlabeled one and the records, the smaller the Euclidean

distance will be. The description of the fault is summarized

in the given document to explain to human operators clearly

what is happening in the system with plain natural language.

In the next step, the brief statement is fed back to the LLM

later and the fault type will be recognized for parsing the

query for searching the database. For example, if the detected

fault is ‘spalling’ on a ball-screw actuator given in the

statement, the LLM can generate highly related several

searching strings:

• How to recover spalling damage in ball-screw actuators?

• What are replacement options for ball-screw actuators

with spalling damage?

• Replacement options for ball-screw actuators with

spalling damage.

• Diagnosing spalling in linear actuators for effective

maintenance.

These questions are then used for matching contents in a

database, for instance, a general knowledge base e.g.

Wikipedia, or a specific expert system with the tool usage

capability of the LLM. All the obtained information will be

summarized to direct maintenance suggestions and action

recommendations in the final step.

4. USE CASE ON LINEAR ACTUATOR FAULT DIAGNOSIS

4.1. Experimental Setup

The time series data1 is collected on a linear actuator system

reported in the paper (Ruiz-Carcel & Starr, 2018). The

detailed description including the mechanical components,

structure, and parameters of configuration are all illustrated

clearly in the article. This paper will not fully reintroduce the

actuator system. The dataset acquired during the testing is the

starting point of the introduction to the agent system

application use case.

 At first, the rig was operated under typical working

conditions without any malfunctions to gather a substantial

volume of data that represents the system’s behavior under

varying loads and motion patterns. Two distinct motion

profiles were examined:

• Trapezoidal profile with a constant speed set point

• Sinusoidal profile with a smooth transition speed

In this paper, only data under the trapezoidal profile is

considered for simplicity, the utilization of multiple profiles

can be taken into account in future upgrades. The trapezoidal

profile is tested for normal and faulty conditions under three

distinct load scenarios: 20kgf, 40kgf, and -40kgf. The full

motion sequence was repeated 5 times in one working

situation under a load as one test. Each test will be conducted

10 times repetitively to generate a dataset with an adequate

amount of observation in each case studied. a total of 50

samples, in every scenario analyzed. Furthermore, three

distinct mechanical flaws in different degradation levels were

intentionally introduced into various portions of the system

to simulate modes typically experienced by these types of

machines. The faults of the system in this dataset include:

• Spalling from level 1 to level 8 (8 states)

• Lack of lubrication from level 1 to level 2 (2 states)

• Backlash from level 1 to level 2 (2 states)

In short, including the normal and all other flaw states, there

are 13 different types and 650 samples in each load

circumstance leading to a total of 1950 samples. For

evaluation, 20% of all samples will be randomly selected to

form a testing dataset, and the remaining samples will be used

for constructing the vector store as introduced in section 3.2.

4.2. Implementation

For analysis, samples under all 13 flaws in each load can be

visualized in Figure 3 and Figure 4 after using the moving

average smoothing with the window size 20 and 15

respectively reported in the paper (Ruiz-Carcel & Starr,
1.The dataset can be found on the link:

https://cord.cranfield.ac.uk/articles/dataset/Data_set_for_Data-

based_Detection_and_Diagnosis_of_Faults_in_Linear_Actuators_/5097649

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 482

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

6

2018). As shown in Figure 3, no matter in which situation,

the position error signals in each fault are distributed too

close to be separated from others, while the pattern of current

signals is more distinguishable. Therefore, the current signal

is the univariant for time series processing in this use case.

Then the univariant time series will be transformed into a

vector representation using the ROCKET. To further improve

the computational efficiency, a trick from the variant of the

ROCKET, namely MiniROCKET (Dempster et al., 2020), is

applied. The main difference is that the kernel length usage

is fixed to 9, instead of randomly selected from choices {7, 9,

11} in the original ROCKET. By doing this, it can make the

result more deterministic. In this use case, the ROCKET is

implemented with the Python package called Pyts (Faouzi &

Janati, 2020).

Then the vector consisting of features computed from each

kernel (20000 dimensions) will be stored together as a vector

database for retrieval.

During the validation, prediction accuracy will be tested in

three different loading conditions individually and the

average value will also be computed. For the diagnosis report

Figure 3. Position error (mm) signals in different fault

states under three load conditions after smoothing. (a)

20kgf (b) 40kgf (c) -40kgf

(a)

(b)

(c)

(a)

(b)

(c)

Figure 4. Current (A) signals in different fault states under

three load conditions after smoothing. (a) 20kgf (b) 40kgf

(c) -40kgf

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 483

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

7

generation, given a loading, randomly select a sample from

the testing dataset to review the fault statement and the

relativity between the generated recommendations and the

fault type.

4.3. Results

To summarize the results of the experiment, different

methods for the classification based on the ROCKET features

with Euclidean distance metric are listed in Table 1. The

comparison between the proposed fault detection method is

compared with the performance of the strong deep learning

baseline method, the InceptionTime. There is an obvious gap

between the top-1 precision based on the ROCKET

vectorization and the baseline algorithm, only around 60% on

average versus the InceptionTime, which is more than 80%

over three loading circumstances. However, the

computational time can be cut down dramatically by the

ROCKET method. For the same historical dataset, for

instance, using all 520 samples under 20kg, the result can be

obtained with CPU (i7-12700H @3.30Hz) for about 25

seconds, while using the InceptionTime with 100 training

epochs, the prediction drawn from scratch requires more than

60 seconds on GPU (Nvidia GeForce RTX 3060 Laptop

GPU). Even though the deep learning model can quickly

conclude after training, the parameters are fixed once the

training is done. When out-of-distribution samples come, the

model requires to be updated without forgetting previously

obtained knowledge. Retraining or fine-tuning the model in

this way is still an ongoing research topic. In contrast, using

the ROCKET with the distance-based metric retriever, new

samples can be encoded in nearly real-time to query existing

vector databases to get the results. Thus, it shows the

potential of on-the-fly data processing capability in industrial

applications.

One way to further improve the classification accuracy is the

incorporation of the ridge or logistic classifiers which can

reach a better prediction outcome. As shown in Table 1, the

ROCKET feature with the ridge classifier can even surpass

InceptionTime in terms of prediction accuracy under the load

of 40kg. In addition, an alternative approach is to use a top-5

retriever. By doing this, when one of the retrieved samples

indicates the correct label, the prediction can be treated as

correct. It can obviously boost the prediction accuracy (up to

85%) compared to any other top-1 classifiers, while with the

cost of bringing the noise and uncertainty by considering

more historical samples. Some types of faults may have

highly similar patterns in the time series data, resulting in

their simultaneous extraction as targets in the retrieval

process. For instance, the ‘spalling2’ sequence can

potentially retrieve ‘spalling1’ or ‘normal’ records from the

vector database because their shapelets share great

similarities. More importantly, this kind of uncertainty is

usually unknown when deploying the system into the real

production environment and delivering imprecise

information to the users.

This problem can be addressed by refining the fault in a

prompt in the brief fault diagnosis statement generation using

the LLM. This is meaningful, as in real-life scenarios, system

degradation occurs gradually and may not have a clear

boundary or change in different malfunctions from a macro

perspective. Therefore, two similar types of faults such as

‘spalling1’ and ‘spalling2’ may have nearly identical effects

to the system and appear to have the same level of

degradation. Thus, they can be regarded as the same fault

type when proposing maintenance suggestions in practice. By

reassigning these faults with a shared label in the prompt for

the LLM, we can shrink the noise introduced by the top-5

retriever and take practical considerations into account while

generating maintenance suggestions, which will make them

more useful and accurate in real-life situations. This is the

first step towards integrating realistic contextual information

into the fault diagnosis process, making it more reliable and

practical.

After getting the refined fault labels, the LLM (in this case,

the GPT-4) can be instructed for multiple query generation,

database retrieval, and the final summarization with

handcrafting prompts step-by-step as illustrated in Figure 2

(The completed prompt can be found in the project repository

listed in the Appendix). This can compile the final diagnostic

report for converting the classification result to an actionable

plan. Also, the Google Chrome web browser is selected as a

general knowledge base used for query searching in this

proof-of-concept verification. As a result, Figure 5 shows a

part of the generated document indicating that the GPT-4 can

give context-aware suggestions to a detected fault.

5. DISCUSSIONS AND FUTURE WORK

The use case successfully demonstrates the feasibility of

applying the LLM to convert the single prediction to the

Method 20kg 40kg -40kg Average

InceptionTime (with 100 epochs) 83.8462% 86.0465% 79.2308% 83.0412%

ROCKET + top-1 retriever 63.0769% 75.1938% 46.1538% 61.4748%

ROCKET + ridge classifier 80.7692% 82.1705% 83.0769% 82.0055%

ROCKET + top-5 retriever 83.0769% 91.4729% 81.5385% 85.3628%

Table 1. Fault classification accuracy under 20kgf, 40kgf, and -40kgf loading situations with different methods.

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 484

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

8

prescription of repairing and reconditioning strategies for

maintenance decision support. Without any extra training or

fine-tuning, and no requirement on manual feature

engineering, dataset construction, and rule-based system

definition, the LLM can automatically link different (public

or private) knowledge sources to compile a reasonable

solution after the fault diagnosis based on humans’ intention.

Therefore, it improves the functionality of current machine

learning as a more proactive and user-friendly production for

industrial applications. In addition to the work presented in

this paper, there are a few interesting directions that can be

explored in the future.

From Univariant to Multivariant: In this study, only

univariant time series (the current signal) is considered for

the ROCKET feature construction, while the data related to

position error has been ignored due to the similar shape

patterns in the time domain. This raises the question of how

to incorporate multiple time series patterns into the vector

store section for fault diagnosis. The ROCKET can be

extended to process multivariant time series, and it is a

candidate update to the proposed agent system with this

capability. In addition, all the introduced methods are in the

time domain, how to integrate information from the

frequency domain into the proposed framework is another

question. By doing this, the time series can be analyzed from

different points of view and construct more distinguishable

features for retrieval with less amount of data.

From Suggestion to Automation: The report generated after

the workflow is expected to offer assistance to people in

maintenance planning. A further idea is to explore how to

Retrieval results: ['spalling7_40_1_5', 'spalling7_40_9_3', 'spalling7_40_10_4', 'spalling7_40_7_3', 'spalling7_40_10_2']
Diagnosis results: Refined fault type1: Obvious fault in spalling

Inference evidence: [spalling7_40_1_5 with 3.1987850822921007, spalling7_40_9_3 with 3.772884271423856, spalling7_40_10_4 with

3.989529120390713, spalling7_40_7_3 with 4.239072661571159, spalling7_40_10_2 with 4.822921558144848]
Description of the Fault: This state indicates that the ball-screw mechanism within the actuator has significant surface damage. This level of spalling

affects the actuator's smoothness and efficiency severely. The presence of such a fault suggests that the actuator's performance and longevity are

compromised, necessitating immediate attention and likely repair or replacement to restore normal operation.

Searching for:

how to repair spalling damage in ball-screw actuators
best practices for preventing spalling in linear actuators.

replacement options for ball-screw actuators with spalling damage
diagnosing spalling in linear actuators for effective maintenance

cost-effective solutions for spalling damage in actuator mechanisms

Searching results:

Reconditioning the Actuator's Ball Screw: This involves repairing and/or replacing worn or damaged internal components of the actuator.

Replacing Cover Bands: When necessary, the cover bands should be replaced to ensure the proper functioning of the actuator.

Addressing Premature Flaking or Abnormal Damage: This may include looking for the cause of the problem, such as careless handling, excessive

misalignment, or insufficient lubrication, and taking measures to prevent machine failure.

Checking for Damage: It is crucial to check for metal fragments that can indicate broken parts and could cause further damage. Also, inspect ball nut
threads for damage and replace them if necessary.

Troubleshooting and Countermeasures: Check for specific damage conditions like the raceways of the screw shaft and ball nut and/or the surface of

the ball peeling off like scales. Implement countermeasures based on identified causes, such as misalignment or lack of lubrication.
Seeking Professional Help: For severe damage or complex repairs, consulting with or hiring a professional service that specializes in actuator repair

might be beneficial. Emergency repair teams can restore damaged ball screws and actuators when time is critical.

Observing Safety and Proper Procedures: Always follow safe handling practices and the manufacturer's instructions to minimize the risk of further
damage during the repair process.

…

Repair and Reconditioning Strategies

To address immediate damage and restore functionality, the following steps are vital:

Ball Screw Reconditioning: Essential for repairing or replacing the internal parts of the actuator to improve functionality.
Cover Bands Replacement: Required when these components are damaged to maintain efficiency.

Addressing Underlying Causes: Investigating and rectifying root causes like misalignment or insufficient lubrication to prevent recurrence.

Damage Inspection: Identifying broken parts through inspection is crucial for preventing further damage.

Implementing Countermeasures: Specific damage conditions should be examined and addressed accordingly, emphasizing the correction of

misalignment and proper lubrication.

Professional Consultation: Seeking expert advice is recommended for complex or severe damages.
Safe Handling and Procedure Adherence: Following manufacturer guidelines and safe practices is imperative throughout the repair process.

…

In summary, the effective management of spalling in balls crew actuators involves a balanced approach of timely and appropriate repairs, adherence to

best practices for prevention, and the consideration of replacement when necessary. The combination of condition-based maintenance and leveraging

cost-effective technological solutions plays a crucial role in enhancing the longevity and reliability of these actuators, ultimately ensuring their optimal
performance in various applications.

Figure 5. A partial piece of an example document for the randomly selected ‘spalling7’ fault.

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 485

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

9

connect the decision with the action to automate the entire

maintenance process from fault detection and identification

to system recovery and reconfiguration. A quick idea is to

extend the sequentialization of prompts till to execution stage

by incorporating external application programming

interfaces (APIs) to directly link to actuators for the system

maintenance. Recent relevant research is conducted for this

purpose such as code-as-policy (Liang et al., 2023). In this

way, it is exciting to develop an automated agent that can be

self-awareness, self-decision, and self-action to the system

health management without too much human intervention.

However, it is also important to note that the verification and

evaluation from the human side are critical to ensure the final

action satisfies all practical and aesthetic requirements in

production environment. How the agent can learn from

human feedback to further align their performance with our

expectations and values is a critical consideration for this

direction.

From Ad-hoc Prompting to Long-Term Memory: The

prompts used in this paper are yet fully automatically

generated. Handcrafting is still needed during the prompting

process. For every generation, the GPT-4 should reload all

information from scratch and provide suggestions merely

limited to the information written in the prompt. Hence, the

agent cannot view and refer to any of previous diagnostic

reports to improve its performance and keep accumulating

experience for future analysis. Some studies show that if an

agent can learn from the contents generated by itself, after

self-learning on these contents, the performance may

improve and even exceed the human level. AlphaGo, for

instance, can self-play with enormous virtual games by itself

and eventually defeat top-ranked human players (Silver et al.,

2017). A further question is whether this similar idea can be

applied to the agent. If the prompting and previous diagnosis

reports can be stored in long-term memory and retrieved for

new situations by the agent itself. It is possible to let the agent

itself to prompt itself automatically with lower human

supervision. This can cut down the requirement of human

knowledge and computation time. Also, it can increase the

likelihood of producing more optimal solutions that people

have yet to conceive.

From the Given Knowledge Base to Self-Exploration: It is

noticeable that automation is built upon a human-defined

logic written in prompts. Thus, the basis of automation still

relies much on human labor and insight. More importantly,

the knowledge base for agent retrieval is also created and

mainly maintained by human beings, thus, heavily restricting

the potential of machine knowledge discovery. It is then

followed by a question of how to allow the machine to

acquire knowledge with the self-exploring capability to

discover new methods to alleviate human bias and errors in

maintenance tasks. Furthermore, it is fascinating to

investigate how to enable the agent to contribute to the

existing knowledge with human beings together for

knowledge acquisition in the system health management

domain.

6. CONCLUSION

This paper presents an LLMs agent-based method for

elaborating predictions from machine learning to actionable

strategy descriptions for maintenance decision support. A use

case of linear actuator fault diagnosis is studied with an agent

built upon ROCKET time series representation, the concept

of RAG, and the prompts chaining technique. By prompting

engineering, the LLM agent can recognize the fault and parse

highly relevant queries to the database using a search tool, (in

this case, the Google Chrome web browser), and summarize

the retrieval results to report to human operators. The study

demonstrates the possibility of constructing autonomous

agents for proactive decision assistance without much human

supervision and training and shows how current LLMs can

be integrated into the industrial workflow.

ACKNOWLEDGEMENT

This research was supported by the Center for Digital

Engineering and Manufacturing at Cranfield University (UK)

APPENDIX

The code for this project can be found on the link:

https://github.com/BlueAsuka/Rocket-RAG

REFERENCES

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,

Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,

Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S.,

Card, D., Castellon, R., Chatterji, N., Chen, A., Creel,

K., Davis, J. Q., Demszky, D., … Liang, P. (2021).

On the Opportunities and Risks of Foundation

Models. https://arxiv.org/abs/2108.07258v3
Dempster, A., Petitjean, F., & Webb, G. I. (2019). ROCKET:

Exceptionally fast and accurate time series

classification using random convolutional kernels.

Data Mining and Knowledge Discovery, 34(5), 1454–

1495. https://doi.org/10.1007/s10618-020-00701-z

Dempster, A., Schmidt, D. F., & Webb, G. I. (2020).

MINIROCKET: A Very Fast (Almost) Deterministic

Transform for Time Series Classification. Proceedings

of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 248–257.

https://doi.org/10.1145/3447548.3467231

Faouzi, J. (n.d.). Time Series Classification: A review of

Algorithms and Implementations. Retrieved March 23,

2024, from https://inria.hal.science/hal-03558165

Faouzi, J., & Janati, H. (2020). pyts: A Python Package for

Time Series Classification. Journal of Machine

Learning Research, 21(46), 1–6.

http://jmlr.org/papers/v21/19-763.html

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 486

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

10

Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt,

D. F., Weber, J., Webb, G. I., Idoumghar, L., Muller,

P.-A., & Petitjean, F. (2019). InceptionTime: Finding

AlexNet for Time Series Classification. Data Mining

and Knowledge Discovery, 34(6), 1936–1962.

https://doi.org/10.1007/s10618-020-00710-y

Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H.,

Chen, Q., Peng, W., Feng, X., Qin, B., & Liu, T. (2023).

A Survey on Hallucination in Large Language Models:

Principles, Taxonomy, Challenges, and Open

Questions. https://arxiv.org/abs/2311.05232v1

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B.,

Florence, P., & Zeng, A. (2023). Code as Policies:

Language Model Programs for Embodied Control.

Proceedings - IEEE International Conference on

Robotics and Automation, 2023-May, 9493–9500.

https://doi.org/10.1109/ICRA48891.2023.10160591

Matyas, K., Nemeth, T., Kovacs, K., & Glawar, R. (2017). A

procedural approach for realizing prescriptive

maintenance planning in manufacturing industries.

CIRP Annals, 66(1), 461–464.

https://doi.org/10.1016/J.CIRP.2017.04.007

Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J.

(2022). A Time Series is Worth 64 Words: Long-term

Forecasting with Transformers.

https://arxiv.org/abs/2211.14730v2

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,

Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,

J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I.,

Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian,

M., Belgum, J., … Zoph, B. (2023). GPT-4 Technical

Report. https://arxiv.org/abs/2303.08774v6

Roy, R., Stark, R., Tracht, K., Takata, S., & Mori, M. (2016).

Continuous maintenance and the future – Foundations

and technological challenges. CIRP Annals, 65(2),

667–688. https://doi.org/10.1016/J.CIRP.2016.06.006

Ruiz-Carcel, C., & Starr, A. (2018). Data-Based Detection

and Diagnosis of Faults in Linear Actuators. IEEE

Transactions on Instrumentation and Measurement,

67(9), 2035–2047.

https://doi.org/10.1109/TIM.2018.2814067

Sapna, R., Monikarani, H. G., & Mishra, S. (2019). Linked

data through the lens of machine learning: An

Enterprise view. Proceedings of 2019 3rd IEEE

International Conference on Electrical, Computer and

Communication Technologies, ICECCT 2019.

https://doi.org/10.1109/ICECCT.2019.8869283

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,

Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,

Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,

Van Den Driessche, G., Graepel, T., & Hassabis, D.

(2017). Mastering the game of Go without human

knowledge. Nature 2017 550:7676, 550(7676), 354–

359. https://doi.org/10.1038/nature24270

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,

Xia, F., Chi, E. H., Le, Q. V., & Zhou, D. (2022).

Chain-of-Thought Prompting Elicits Reasoning in

Large Language Models. Advances in Neural

Information Processing Systems, 35.

https://arxiv.org/abs/2201.11903v6

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang,

M., Wang, J., Jin, S., Zhou, E., Zheng, R., Fan, X.,

Wang, X., Xiong, L., Zhou, Y., Wang, W., Jiang, C.,

Zou, Y., Liu, X., … Gui, T. (2023). The Rise and

Potential of Large Language Model Based Agents: A

Survey. https://github.com/WooooDyy/LLM-Agent-

Paper-List.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K.,

& Cao, Y. (2022). ReAct: Synergizing Reasoning and

Acting in Language Models.

https://arxiv.org/abs/2210.03629v3

Zonta, T., da Costa, C. A., da Rosa Righi, R., de Lima, M. J.,

da Trindade, E. S., & Li, G. P. (2020). Predictive

maintenance in the Industry 4.0: A systematic literature

review. Computers & Industrial Engineering, 150,

106889. https://doi.org/10.1016/J.CIE.2020.106889

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 487

