Advancing Durability Testing in Automotive Component through Prognostics and Health Management (PHM) Integration
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In automotive Powered Door Systems (PDS), the emergence of grinding and clicking noise over time is a common failure mode. This issue typically arises from design or assembly inconsistencies and intensifies due to wear or increased clearance at its component, becoming noticeable to passengers, and causing discomfort. Numerous automotive manufacturers conduct comprehensive durability tests to tackle such issues during the development. Conventional durability tests, however, rely on the manual effort such as visual and auditory inspection at regular intervals, hence, is subjective and inefficient. This study introduces a novel method by the prognostics and health management (PHM) approach to detect anomaly and assess its severity of the noise during the durability test of the PDS, which may improve the reliability of noise detection and reduces the test time by early termination using prognosis capability. The results demonstrate the potential, paving the way for its broader application across various domains to advance testing processes and reliability.
How to Cite
##plugins.themes.bootstrap3.article.details##
Prognostics and Health Management, Durability Test, Automotive Components
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.