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ABSTRACT 

In automotive Powered Door Systems (PDS), the emergence 

of grinding and clicking noise over time is a common failure 

mode. This issue typically arises from design or assembly 

inconsistencies and intensifies due to wear or increased 

clearance at its component, becoming noticeable to 

passengers, and causing discomfort. Numerous automotive 

manufacturers conduct comprehensive durability tests to 

tackle such issues during the development. Conventional 

durability tests, however, rely on the manual effort such as 

visual and auditory inspection at regular intervals, hence, is 

subjective and inefficient. This study introduces a novel 

method by the prognostics and health management (PHM) 

approach to detect anomaly and assess its severity of the 

noise during the durability test of the PDS, which may 

improve the reliability of noise detection and reduces the test 

time by early termination using prognosis capability. The 

results demonstrate the potential, paving the way for its 

broader application across various domains to advance 

testing processes and reliability. 

1. INTRODUCTION 

In recent developments in the automotive industry, many 

components are electrified to enhance the user convenience. 

Prominent examples include power window, automatic 

tailgates, and power door systems. These systems, however, 

often have various forms of wear and joint failures, 

significantly impacting user satisfaction and perceived 

vehicle quality. 

Most issues with these components stem from design flaws 

or problems during the assembly process. To address these 

challenges and improve vehicle durability and reliability, 

automotive manufacturers conduct durability tests. 

Conventionally, these tests have relied on manual visual and 

auditory inspections performed at regular intervals, which are 

both subjective and inefficient. 

Prognostics and Health Management (PHM) technology has 

gained considerable attention across various industries, 

including aerospace, smart manufacturing, power plants, and 

transportation, for its potential to prevent failures, reduce 

operational costs, and facilitate predictive maintenance.(Choi, 

2014; Zio, 2022) The potential of PHM to enhance durability 

testing is substantial. In this paper, we discuss the application 

of PHM techniques and frameworks to durability testing, 

focusing on developing more accurate and automated 

diagnostic models. 

1.1. Power Door System (PDS) 

The case study presented in this paper focuses on the Power 

Door System (PDS), a feature designed to enhance user 

convenience in high-end vehicles. Figure 1 illustrates a 

vehicle equipped with the PDS on its rear door, showcasing 

the application of the PDS. This system automatically closes 

the door after a passenger enters. 

Jinwoo Song et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 162



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

2 

 

Figure 1. Power door system installed on a vehicle 

The PDS is mounted on each door, and as shown in Figure 1, 

the ends of the spindles are connected into the pillar of 

vehicle. When the motor rotates, it drives the worm gear to 

turn the wheel gear. The relative motion then pulls the spindle, 

closing the door with a mechanism that takes about 3 seconds 

for the closure operation. 

In case of the poor design or manufacturing, the PDS can 

encounter issues such as a grinding or clicking noises during 

the door closing, which usually occurs after cycles of door 

closing. The grinding noise is a continuous rough sound 

heard throughout the closure. This noise is often caused by 

small pitting on the drive worm gear, as depicted in upper 

right corner of Figure 1. On the other hand, the clicking noise 

is a sharp sound heard at a certain moment during the door 

closing. It occurs due to clearance, wear or assembly damage 

between the pin and pin socket connecting to the body's pillar. 

These noises are characterized as periodic and impulsive, 

respectively. 

In order to determine the occurrence of these noises in the 

PDS, a durability test is conducted, incorporating both visual 

and auditory inspections at regular intervals. The method, 

however, is not reliable nor efficient due to the manual 

procedure. To overcome this, a diagnostic model is 

developed, thereby enhancing the reliability and functionality 

of the PDS. 

1.2. Sensor Selection 

To choose a sensor that can reveal useful features for the 

diagnosis, four sensors are considered for the potential 

candidates: motor current, motor rotation (hall sensor), and 

accelerometer attached to the PDS and to the body side. The 

current and hall sensor data are collected at a rate of 4 kHz, 

while the accelerometer data at 25.6 kHz. 

Figure 2 illustrates the signals captured by these sensors 

during the operation of PDS. Each graph within the figure 

represents the data from different sensors, plotted over time 

to show the dynamic changes in sensor readings as the door 

progresses through 3 repetitions of open and close motions. 

Upon comparison of these signals in terms of efficacy of 

diagnostic, consistency, strength and the convenience of 

installation, the accelerometer signals perpendicular to the 

body side is found appropriate for the study. Consequently, 

all the signals discussed in this paper are measured from this 

sensor. 

The rest of the paper is outlined as follows: Section 2 

introduces the PHM framework, Section 3 and 4 detail the 

process of developing diagnostic models for grinding noise 

and clicking noise, respectively. Lastly, conclusions are 

presented in Section 5. 

 

Figure 2. Various sensor signals of the PDS motion 

2. PHM FRAMEWORK 

In this section, the development procedure of diagnostic 

model and its application to test data are addressed. Figure 3 

illustrates the overall flowchart of the PHM process. It has 

two major phases: construction of the diagnostic model and 

its application. 
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Figure 3.  Flowchart of PHM framework 

In the construction phase, the first step is the collection of 

sensor signals and pre-processing. Two types of signal data 

are collected in the test: first is the discrete data for normal 

and faulty conditions. second is the continuous data from the 

normal to the failure. In a single set of signal data, not the 

whole period is exploited but only a segment is taken for a 

better feature extraction. This varies depending on the 

considered noise, which accounts for the symptoms and 

causes of failures as well as the operational mechanisms of 

the system. 

Next is the feature extraction and selection. Various features 

are extracted, including time domain, frequency domain, and 

domain-specific features.(Sim et al., 2020) Effective feature 

selection involves choosing the features with higher value of 

Fisher Discriminant Ratio (FDR) that can better distinguish 

the normal and faulty conditions in case of discrete data and 

the features with a higher Spearman correlation in case of the 

continuous data. 

Based on the selected features, a health index (HI) is 

constructed in the next step. While there are several 

approaches for this, Mahalanobis distance is employed in this 

study, which is useful when there are the normal features only. 

Thresholds for anomaly and failure are established for the HI, 

respectively, to effectively distinguish between the normal, 

warning and failure states. 

In the application phase, data from the test subjects are 

collected. Following the procedures defined in the diagnostic 

model, the HI is calculated and monitored to perform 

anomaly or fault detection. This systematic approach allows 

for precise and proactive management of system health. 

3. DIAGNOSIS MODEL FOR GRINDING NOISE 

To develop the diagnostic model for grinding noise, normal 

and faulty data sets are collected from three specific cases. 

Among these, case A involves less severe noise occurrence, 

while the cases B and C involve relatively severe noise 

occurrences. 

Table 1. grinding noise datasets 

Vehicle / 

Placement 
Class Features Case 

Vehicle1 / 

Front 

Normal - 
A 

Faulty Small grinding noise 

Vehicle1 / 

Rear 

Normal - 
B 

Faulty Loud grinding noise 

Vehicle2 / 

Rear 

Normal - 
C 

Faulty Loud grinding noise 

As described in Section 2, for the development of the 

diagnostic model, accelerometer which attached to the 

vehicle's body is utilized. Figure 4 presents simultaneous 

recordings of the motor’s relative rotational speed and 

vibration signals. It can be observed that the motor operates 

in three phases of acceleration, constant speed, and 

deceleration. 

 

Figure 4. Motor speed and accelerometer signal while 

closing 

Since the grinding noise occurs continuously during the 

closing operation, the signal over the whole period can be 

responsible for the noise. However, only a part with constant 

speed is chosen for the efficacy of feature extraction. 

Using the signal in constant speed, numerous candidate 

features are extracted as shown in Figure 5, in which the blue 

o and red x denote the normal and fault respectively. Note 

that all the features are normalized by Gaussian distribution. 

Among these, more significant features are selected that can 

distinguish the two classes more clearly. For this purpose, 
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Fisher discriminant ratio (FDR) is calculated, defined as 

follows. 

 

Figure 5. Features from each signal of four datasets 

𝐹𝐷𝑅 =
(𝜇1 − 𝜇2)

2

𝜎1
2 + 𝜎2

2
(1) 

where 𝜇𝑖  is mean value of feature, and 𝜎𝑖  is standard 

deviation of feature for i-th class. As a result, the root mean 

square (RMS) and Shannon entropy (SE) are recognized as 

the most important features. 

Using these selected features, an HI based on the 

Mahalanobis distance is constructed from the normal data as 

defined in the following equation. 

𝐻𝐼 = (𝐱 − 𝜇𝑛)
′𝐒𝑛

−1(𝐱 − 𝜇𝑛) (2) 

where 𝐱 is feature vector of input data, 𝜇𝑛 is mean of feature 

vector for normal data and 𝐒𝑛 is covariance matrix of feature 

for normal data. The results as shown in Figure 6, 

demonstrate a clear distinction between the normal and faulty 

data across all cases. Based on the HI values of the collected 

normal and faulty data, thresholds for anomaly and failure are 

established as the dotted blue and magenta lines, which are 

the normal HI at upper 95% confidence and fault HI at lower 

95% confidence levels, respectively. This diagnostic model 

can be utilized in the future tests to determine whether the 

product yields the grinding noise during the cycles of 

operation. 

 

Figure 6. Health index for three cases 

4. DIAGNOSIS MODEL FOR CLICKING NOISE 

To develop the diagnostic model for clicking noise, datasets 

are collected from both the front and rear doors of vehicles. 

The collected datasets are given in Table 2. Front door 

datasets include four discrete states: two normals and two 

faults, each collected from different PDS installed on two 

vehicles. In the table, Normal 1 and Normal 2 indicate no 

clicking noise. However, Normal 2 is with a subtle grinding 

noise. And Fault 1 indicates a small clicking noise, while 

Fault 2 indicates a significantly loud clicking noise. For the 

rear door, run-to-failure data are collected for up to 38,000 

cycles, from which the normal and fault are defined by those 

less than 10,000 and over 23,000 cycles based on the experts’ 

opinion. 

Table 2. Clicking noise datasets  

Vehicle / 

Placement 
Class Feature Case 

Vehicle1 / 

Front 
Normal1 - 

Front 

Vehicle1 / 

Front 
Normal2 

Small grinding 

noise from motor 

Vehicle2 / 

Front 
Faulty1 Small clicking noise 

Vehicle1 / 

Front 
Faulty2 Loud clicking noise 

Vehicle2 / 

Rear 

Normal 
- 

(Cycle 0 ~ 10000) 

Rear 

Warning 

Tiny clicking noise 

(Cycle 10000 ~ 

23000) 
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Faulty 

Small clicking noise 

(Cycle 23000 ~ 

38000) 

As opposed to the grinding noise, clicking noise, 

characterized as an impulsive signal, typically occurs only at 

a certain moment during the door closing. To isolate these 

impulsive events, kurtosis in a short interval with 0.1 second 

is computed over a sliding time window, which is a widely 

used feature in vibration analysis for its ability to detect 

spikes in signals.(Cerrato-Jay et al., 2001; Honarvar & 

Martin, 1997) 

Figure 7 illustrates both the original and its kurtosis for the 

sound and vibration signal, respectively. In the analysis, 

signals at the beginning (0-0.3 seconds) and after 2.5 seconds 

are disregarded as they are those at the start and end of closing, 

respectively. In the upper two figures, it is observed that the 

moments when the noise is heard and when its kurtosis shows 

local peak are the same, as marked by the red explosion 

symbols. Based on this finding, the vibration signal is 

processed in the similar manner, which are given in the lower 

two figures. Interestingly, the moments when the kurtosis 

shows local peak are the same in the sound and vibration 

signals. Therefore, the kurtosis is used as the means to 

identify the moment of clicking noise, and the signal over a 

small time period of 0.1 second is taken for further processing 

towards the feature extraction. 

 
Figure 7. Raw signal and frame kurtosis for sound and 

vibration signal 

As in the previous section, several candidate features are 

extracted, from which the most significant ones are sought 

for. The results are in Figure 8, in which (a) are those for the 

front (normal 1 and fault 1 only), and (b) are for the rear 

(normal less than 3,000 cycles and fault over 33,000 cycles) 

are taken among the run-to-failure data). The blue o and red 

x denote the normal and fault respectively. In comparison 

with the grinding noise, the separation between the normal 

and fault both in the front and rear are less clear. 

  
(a) (b) 

Figure 8. Features from each dataset 

Nevertheless, the same procedure is taken to select the most 

important features, which are RMS (root mean square), P2P 

(peak-to-peak), and SE (Shannon entropy). The diagnostic 

performance by the HI made of these features are shown in 

Figure 9. In Figure 9(a), which is the result of front door, 

considerable overlap is found between the HI for normal 2 

(blue o) and fault 1 (magenta x). Furthermore, in the case of 

rear door as shown in Figure 9(b), clear increasing trend are 

not present towards the fault conditions. All these suggest 

that the selected features are not so effective to use to 

construct HI. 

 

  
(a) (b) 

Figure 9. Health Index from each dataset 

To discover more effective features, another attempt is made, 

which is the time-frequency analysis. Figure 10 displays a 

spectrogram of continuous wavelet transformation (CWT), 

obtained for the instant of 0.1 second centered at the clicking 

noise. The result reveals that the clicking noise occurs in a 

very short 10 ms time window at a certain frequency range. 

In order to quantify this into the feature and use it as the HI, 

total energy of the impulsive moments within specific time 

and frequency windows is used. The results are illustrated in 

Figure 11, in which the Figure 11(a) for the front door shows 

a better distinction between the normal and fault, and Figure 

11(b) for the rear door with run-to-failure presents a better 

increasing trend in HI, demonstrating the superiority of the 

CWT based approach over the time-based ones. 
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Figure 10. Spectrogram for click noise 

Despite these advancements, there remains considerable 

dispersion in the HI, which makes it still challenging to apply 

in the field. This variability could stem from various external 

factors that influence the occurrence of clicking noises. 

Further signal processing efforts to mitigate these influences 

or the identification of more effective features will be 

essential to enhance diagnostic accuracy. 

  
(a) (b) 

Figure 11. Health Index from new feature 

5. CONCLUSIONS 

In this study, prognostics and health management (PHM) 

approach such as the signal processing, feature extraction and 

selection, and construction of HI, was applied to develop 

diagnostic models for two representative faults occurring in 

the power door systems (PDS): grinding and clicking noises. 

These faults are characterized by a continuous rough sound 

and a sharp, transient sound during door closure, respectively. 

The method has facilitated the development of diagnostic 

models capable of detecting both types of noises, 

demonstrating the potential in the real-world applications. 

However, much more data are necessary to refine the model 

and validate its performance, which requires a lot of efforts 

in time and money. Particularly for the clicking noise model, 

the HI contains significant uncertainty, highlighting the 

necessity for exploring diverse approaches and possibly new 

features to enhance diagnostic accuracy. 

By integrating the PHM into the durability tests, we have 

showcased the potential for automation and quantitative fault 

assessment. If we can obtain comprehensive run-to-failure 

(RTF) data, it might also enable us to predict the remaining 

useful life of components, which could significantly reduce 

testing time by preemptively forecasting the occurrence of 

noise issues. 
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