Analytical Modeling of Health Indices for Prognostics and Health Management
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Kristupas Bajarunas
Manuel Arias-Chao
Abstract
Understanding the current health condition of complex systems and their temporal evolution is an important step in prognostics and health management (PHM). However, when managing a fleet of complex systems, variations arising from manufacturing, environmental factors, mission profiles, and maintenance practices result in diverse health index (HI) trajectories. Therefore, in PHM, it is essential not only to identify common fleet-wide trends but also to account for individual asset-level variations when inferring HIs.
While several data-driven approaches exist for inferring individual asset-level HIs from unsupervised run-to-failure degradation data, little research has been devoted to deriving analytical probabilistic representations of HIs that encompass both fleet-level trends and individual asset-level fluctuations. This paper aims to bridge this gap by addressing the research question of how to obtain an analytical representation of probability distributions for the time to reach intermediate degradation levels, using run-to-failure data or incomplete degradation trajectories from a fleet of complex systems.
In this work, it is assumed that suitable, asset-specific HI curves have been inferred through a fusion of deep learning techniques and prior expert knowledge of degradation physics . Given this context, we derive an analytical probabilistic description of the health index (HI) that reflects both fleet-wide trends and asset-specific conditions in the cases of Gamma or Weibull time-to-failure (TTF) distributions. Our approach involves defining HIs with a power law function, enabling the modeling of TTF and time to reach intermediate degradation levels. Moreover, we also detail the procedure for estimating the power law exponent from field data through regression analysis and conduct a sensitivity analysis regarding this exponent.
To illustrate our methodology, we present two case studies based on the N-CMAPPS dataset of turbofan engines and Li-ion batteries, validating the aforementioned assumptions and illustrating our methodology steps
How to Cite
##plugins.themes.bootstrap3.article.details##
Health Index, Analytical, probabilistic, Degradation, Time to Failure, First hitting time, Weibull, Gamma
Bajarunas, K., Baptista, M., Goebel, K., & Chao, M. A.(2023). Unsupervised physics-informed health indicator estimation for complex systems. In Annual conference
of the PHM society (Vol. 15).
Dersin, P. (2023). Modeling remaining useful life dynamics in reliability engineering. CRC Press,Taylor and Francis
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.