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ABSTRACT

Understanding the current health condition of complex sys-
tems and their temporal evolution is an important step in prog-
nostics and health management (PHM). However, when man-
aging a fleet of complex systems, variations arising from man-
ufacturing, environmental factors, mission profiles, and main-
tenance practices result in diverse health index (HI) trajecto-
ries. Therefore, in PHM, it is essential not only to identify
common fleet-wide trends but also to account for individual
asset-level variations when inferring HIs.

While several data-driven approaches exist for inferring indi-
vidual asset-level HIs from unsupervised run-to-failure degra-
dation data (see e.g. (Djeziri, Benmoussa, & Zio, 2020)),
little research has been devoted to deriving analytical proba-
bilistic representations of HIs that encompass both fleet-level
trends and individual asset-level fluctuations. This paper aims
to bridge this gap by addressing the research question of how
to obtain an analytical representation of probability distribu-
tions for the time to reach intermediate degradation levels,
using run-to-failure data or incomplete degradation trajecto-
ries from a fleet of complex systems.

In this work, it is assumed that suitable, asset-specific HI
curves have been inferred through a fusion of deep learning
techniques and prior expert knowledge of degradation physics
(e.g., (Bajarunas, Baptista, Goebel, & Chao, 2023)). Given
this context, we derive an analytical probabilistic description
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of the health index (HI) that reflects both fleet-wide trends and
asset-specific conditions in the cases of Gamma or Weibull
time-to-failure (TTF) distributions. Our approach involves
defining HIs with a power law function, enabling the mod-
eling of TTF and time to reach intermediate degradation lev-
els. Moreover, we also detail the procedure for estimating the
power law exponent from field data through regression analy-
sis and conduct a sensitivity analysis regarding this exponent.

To illustrate our methodology, we present two case studies
based on the N-CMAPPS dataset of turbofan engines and Li-
ion batteries, validating the aforementioned assumptions and
illustrating our methodology steps.

1. INTRODUCTION

An important step in prognostics and health management of
complex industrial systems is inferring their current health
condition. To this end, a normalized health index is often de-
fined as a metric that measures the degree of degradation of
equipment. Conventionally, a value of 1 for the health in-
dex corresponds to perfect health, and a value of 0 to a failed
state. An intermediate value characterizes a state where the
item is still operating but less than perfectly. If the health
index captures the physical condition of the asset correctly,
the time evolution of the health index is an appropriate means
for performing prognostics, i.e., predicting the evolution of
a degradation, eventually up to a failure, and the time until
that failure, or remaining useful life (RUL). Therefore, the
health index for an asset constitutes a key tool for mainte-
nance decision-making, as it enables health assessment (in
particular, degradation severity) and prognostics.
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The derivation of HIs has traditionally depended on extract-
ing key features from condition monitoring (CM) data and
integrating them with a physical understanding of the asset to
create a health index (Atamuradov et al., 2020). This practice,
while effective, is heavily reliant on domain-specific knowl-
edge, presenting a significant barrier to scalability and adapt-
ability across different systems. To address these limitations,
diverse data-driven approaches have been proposed for es-
timating HI from condition monitoring data. For instance,
supervised learning models have been applied when dealing
with datasets that contain labels of HIs (Roman, Saxena, Robu,
Pecht, & Flynn, 2021). Similarly, residual techniques that
identify deviations from a system’s expected behavior (Ye &
Yu, 2021; Hsu, Frusque, & Fink, 2023) offer another path-
way, albeit contingent on the existence of a representative
dataset of ”healthy” state labels- an often challenging pre-
requisite in industrial settings due to difficulties in obtain-
ing a representative data for complex systems. Recently, un-
supervised methods combining deep learning methodologies
with traditional reliability engineering principles in the form
of explicit, analytical representation of the health index have
shown promise in inferring asset-specific HI (Bajarunas et al.,
2023; Yang, Habibullah, & Shen, 2021; Qin, Yang, Zhou, Pu,
& Mao, 2023). Therefore, these recent works highlight the
potential of leveraging the extensive body of reliability engi-
neering theory, alongside deep learning algorithms, to model
RUL dynamics effectively. An in-depth study of RUL dynam-
ics and uncertainty, based on reliability theory, is reported in
(Dersin, 2023).

In this work, our objective is to provide a theoretical founda-
tion for constructing a robust analytical HI that reflects both
fleet-wide trends and asset-specific conditions. By doing this,
we aim to enable the integration of reliability engineering
models in machine learning algorithms by providing an an-
alytical probabilistic description of the HI. Addressing this
objective involves answering the following question: How to
find an analytical description for a time-dependent health in-
dex integrating random parameters to capture asset variabil-
ity and align with observed times to reach various degrada-
tion severity levels including the time to failure?

Hence, in this work, we assume the availability of time-to-
failure (TTF) distributions for a fleet of assets. Given this
assumption, we formulate the problem in a general context
and provide an analytical solution when the TTF follows a
Gamma distribution or a Weibull distribution. In this sce-
nario, with a health index defined by a power law featuring
either an inverse-Gamma or a Fréchet-distributed coefficient,
as the case may be, we demonstrate that the time to reach any
intermediate degradation level follows a Gamma or Weibull
distribution, respectively, sharing the same shape parameter
as the TTF. Moreover, the scale parameter explicitly depends
on the degradation level. We also detail the procedure for es-
timating the power law exponent from field data through re-

gression analysis and conduct a sensitivity analysis regarding
this exponent.

To validate our methodology, we present case studies focus-
ing on the N-CMAPPS turbofan and randomized usage Li-ion
batteries datasets. The results confirm the proposed method-
ology and highlights its practical applications. Obtaining an
explicit, analytical representation of the health index, includ-
ing the random variability among assets, is a definite advance
over the state of the art that offers a major advantage. The pro-
posed approach enables maintenance decision-making with
minimal computational demand.

The paper is organized as follows: Section 2 presents the
methodology used in this work; we first formulate the prob-
lem in Section 2.1 and present a resolution method in Section
2.2. We then delve into specific cases involving Gamma (Sec-
tion 2.3) and Weibull distributions (Section 2.4), followed by
a discussion on estimating the power law exponent control-
ling the shape of degradation for both analyzed distributions
(Section 2.5) . Case studies from the N-CMAPSS and ran-
domized battery usage datasets illustrate our approach (Sec-
tion 3), with sensitivity analysis on the power law exponent
(Section 4). The paper concludes with a summary of our find-
ings and suggestions for future research in Section 5.

2. METHOD

This section provides a detailed explanation of the method-
ology used to derive an analytical description of the HI. The
process is divided into several steps, which are outlined below
and visually summarized in Figure 1

2.1. Problem Statement

A degradation phenomenon can be described by an HI, which
evolves with time i.e., HI(t), usually monotonically, from a
perfect health condition to a failed state. Perfect health corre-
sponds to a value HI(t) = 1, and failure is deemed to occur
at the first time t, for which HI(t) hits 0.

Given a plausible probability distribution for the time to fail-
ure, denoted T , which is derived from available data or prior
knowledge, it is desired to find a family of probability dis-
tributions for the times Ts needed for the HI to reach any
intermediate health level s,

0 < s < 1 (1)

In other words, given a prior probability distribution, condi-
tional upon HI(0) = 1, for the time to failure T ,

T = inf[t : HI(t) = 0] (2)

find, for any intermediate level s, the probability distribution
for Ts:
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Figure 1. Flowchart illustrating the different steps of the
proposed method along with the context of its applicability.
(Previous work) The methodology assumes the availability
of asset-specific Health Index (HI) derived from CM data, for
instance, based on Bajarunas et al. (This work) The process
of estimating begins with the assumption of a prior plausi-
ble Time to Failure (TTF) distribution (Gamma or Weibull
models) and a probabilistic parametric model of a Health In-
dex (h(b, p, t)). Based on these assumptions, we derive the
analytical forms of the distributions describing the time re-
quired for the HI to reach any specified intermediate health
level (TTS), thus providing a comprehensive statistical frame-
work to model a degradation process. (Future work) The es-
timation of probabilistic, asset-specific failure times through
extrapolation of individual HI’s is suggested as a possible ap-
plication of the derived analytical HI.

Ts = inf[t : HI(t) = s] (3)

2.2. Resolution Method: General Principle

LetR(t) denote an assumed reliability function. Then a prob-
abilistic model for HI(t), as a non-increasing function of t,
is selected, and the condition P [T > t] = R(t) is imposed.
Finally, Eq. (3) is applied to obtain the distribution of Ts:

Rs(t) = P [Ts > t] (4)

Let us consider the following parametric model for the health
index:

HI(t) = h(p1, p2, ...pn; t) (5)

with an assumed functional form h, where some of the pa-
rameters p1, p2, . . . , pn are random variables.

Then, it should be noted that

h(p1, p2, ...pn; t) > 0 (6)

is equivalent to
T > t (7)

therefore the following condition is imposed:

P [h(p1, p2, ...pn; t) > 0] = R(t) (8)

with the right-hand side of Eq. (8) known.

Similarly, the condition Ts > t is equivalent to HI(t) > s
and hence from Eq. (8), one derives

P [h(p1, p2, ..., pn; t) > s] = Rs(t) (9)

for any value of s between 0 and 1.

The method is quite general and can be applied to any TTF
distribution. In the next two subsections, the method is de-
tailed and illustrated on two frequently encountered families
of TTF distributions: Gamma and Weibull, respectively.

2.3. Gamma Case

Let us consider the case when the time to failure follows a
Gamma distribution with shape parameter β and rate param-
eter λ. The Gamma reliability function for time T (Nachlas,
2017) can be expressed as:

R(t) = 1− γ(λt;β)

Γ(β)
(10)

where γ(λ.t;β) stands for the incomplete Euler gamma func-
tion.

A health index is sought, HI(t), such that the time for the HI
to reach the value 0 is Gamma-distributed.

We shall now show that a solution is provided by the follow-
ing power law for the health index:

h(b; p; t) = 1− (bt)p (11)
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with a positive exponent p and a random variable b with an
inverse-gamma distribution with shape parameter β and scale
parameter λ (b has the dimension of a frequency, i.e., the in-
verse of a time, so does λ). The health index defined by Equa-
tion (11) decreases monotonically from 1 to 0 as the time or
usage variable t increases from 0 to 1

b . It is a convex function
of t if p < 1 and a concave function if p > 1 ( and linear in
the limit case of p = 1). The property that b has an inverse-
Gamma distribution is equivalent to 1

b having a Gamma dis-
tribution with parameters β (shape) and λ (rate).

Denoting by T the time to failure, there follows from the
above health index definition that

P [T > t] = P [(bt)p < 1] = P [bt < 1] = P [
1

b
> t] (12)

Since 1
b is Gamma distributed , the right-hand side of (12) is

the Gamma reliability function at time t, with shape and rate
parameters respectively equal to β and λ. Therefore, it has
been proved that the definition (11) for the health index leads
to a Gamma-distributed time to failure. .

Now let us look at the distribution of the time for the health
index to reach a level s, between 0 and 1.

Let us denote that first hitting time Ts.

P [Ts > t] = P [h(b; p; t) > s] = P [1− (bt)p > s] (13)

Equation (13) is equivalent to:

P [Ts > t] = P [(bt)p < 1− s] = P [
1

b
>

t

(1− s) 1
p

] (14)

Since 1
b is Gamma (β,λ) distributed, it follows from (10) that,

RTs(t) = P [Ts > t] = 1−
γ( λt

(1−s)
1
p
;β)

Γ(β)
(15)

Therefore it has been shown that Ts has a Gamma distribu-
tion with shape factor β, and rate parameter λs given by the
following function of s and the exponent p:

λs =
λ

(1− s) 1
p

(16)

The problem stated in the beginning has thus been solved in
the case when the time to failure has a Gamma distribution.
The mathematical expectations of Ts and that of the health
index HI(t) are then derived explicitly, as follows, from the

properties of the gamma distribution and the inverse-gamma
distribution (Llera & Beckmann, 2016):

E(Ts) =
β

λs
=
β

λ
(1− s) 1

p (17)

which can also be written as :

E(Ts) = E(T )(1− s) 1
p (18)

To derive the expectation of the health index HI(t); we now
use properties of the inverse-gamma distribution. If X has
an inverse-gamma distribution with parameters β and λ, the
nth-order moment of X is given (Llera & Beckmann, 2016)
by:

E(Xn) = λn
Γ(β − n)
Γ(β)

(19)

as long as

n < β

Therefore

E[HI(t)] = 1− E(bp)tp = 1− (λt)p
Γ(β − p)
Γ(β)

(20)

assuming the exponent p to be smaller than the shape factor
β.

2.4. Weibull Case

We shall now consider the case where the time to failure fol-
lows a 2-parameter Weibull distribution. Denoting β and η
the shape and scale parameters, respectively, this corresponds
to the well-know reliability function:

R(t) = e−(t/η)β (21)

For the health index, let us take the following power law,
slightly different from the one taken in the Gamma distribu-
tion case, for reasons which will become apparent:

h(b; p; t) = 1− btp (22)

where p is a positive exponent, and b is a random variable.
It will be seen that, if b has a Fréchet distribution (Fréchet,
1927; Ramos, Louzada, Ramos, & Dey, 2020), then the time
to failure is Weibull distributed.

Indeed, by definition of the Fréchet (also known as ”inverse
Weibull”) distribution, if the random variable b is Fréchet-
distributed with scale parameter λb and shape parameter βb,
then:

4

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 179



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

P [b > u] = 1− exp[−( u
λb

)−βb)] (23)

The shape parameter βb is dimensionless, and the scale pa-
rameter λb has the dimension of t to the power of (−p), just
as the coefficient b.

Then, by substituting
u = t−p (24)

in (23), the following is obtained :

P [HI(t) > 0] = P [b < t−p] = exp[−(λbtp)βb ] (25)

and this expression must be equated to P [T > t], which
is assumed to be the reliability function of a two-parameter
Weibull variable (η ,β).

Therefore, the parameters of the Fréchet distribution for b are
obtained as follows:

λb = 1/ηp (26)

βb = β/p (27)

as it can be verified by substituting the right-hand sides of
(26) and (27) respectively for λb and βb in (25). Then the dis-
tribution of Ts, the first hitting time of level s, can be derived
as well, for any value of s between 0 and 1.

P [Ts > t] = P [HI(t) > s] (28)

= P [1− btp > s] = P [b < (1− s)t−p] (29)

Therefore, by substituting for u in (23) the value (1 − s)t−p

and using (26) and (27),

P [Ts > t] = exp[−(tp/ηp(1− s))
β
p ] (30)

or
P [Ts > t] = exp[−(1− s)− β

p (
t

η
)β ] (31)

It is seen that (31) describes the reliability function of a Weibull
random variable with: 1) the same shape factor β as the dis-
tribution of T ; 2) A scale factor ηs expressed as follows as a
function of s , the scale factor η of T and the exponent p:

ηs = η(1− s) 1
p (32)

Thus, the problem stated in the beginning has also been solved
in the Weibull distribution case.

Accordingly, the mathematical expectation of the first hitting
time Ts is obtained:

E(Ts) = η(1− s) 1
pΓ(1 +

1

β
) (33)

Equation (33) can also be formulated as

E(Ts) = E(T )(1− s) 1
p (34)

which is the same as in the Gamma-distribution case (18).
Also, the expectation of the health index HI(t) at time t can
be derived from the expectation of the random coefficient b,
assumed Fréchet distributed:

E(b) =
1

ηp
Γ(1− p

β
) (35)

Therefore

E(HI(t)) = 1− E(b)tp = 1− (
t

η
)pΓ(1− p

β
) (36)

The quantiles of b can also be derived. The x-percent quantile
is Bx:

Bx =
1

ηp(−lnx) p
β

(37)

In particular, the median (50-percent quantile) is given by:

B0.5 =
1

ηp(ln2)
p
β

(38)

2.5. Estimation of Exponent p from Data

From (32), there follows, by taking logarithms,

log(1− s) = p log(
ηs
η
) (39)

Therefore, after estimating ηs from the data sample for vari-
ous values of s, the regression coefficient of log(1 − s) with
respect to log(ηs

η ) will provide an estimation of p. Also, tak-
ing (34) into account,

log(1− s) = p log(
E(Ts)

E(T )
) (40)

Therefore, in order to estimate p, it is equivalent to estimate
E(Ts) from the data samples corresponding to several values
of s and then run the linear regression of log(1 − s) with re-
spect to log(E(Ts)

E(T ) ). The regression coefficient (slope) is the
best estimate of p. The same method applies in the Gamma
distribution case since the dependence of E(Ts) on s is the
same in both cases (see Section 2.3).

2.6. Incomplete Degradation Trajectories

Our method for obtaining an analytical form of the HI does
not require run-to-failure condition monitoring data 1. Let us

1If no failures are observed the HI has a different meaning as it is normalized
with respect to the most degraded unit in the fleet.
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consider u as the smallest threshold ofHI(t) observed for all
units in the fleet. Then in equation (34), instead of consider-
ing the expected TTF, E(T ), we would consider the expected
time to hit the common threshold E(Tu). The revised equa-
tion would be:

E(Ts) = E(Tu)
(1− s)1/p
(1− u)1/p (41)

Where E(Ts) is the sample arithmetic mean for each value
s > u. When u = 0, this is equivalent to Eq. 34. The
exponent p can be estimated from linear regression in

log(1−u)−log(1−s) = p(log(E(Tu))−log(E(Ts))) (42)

3. CASE STUDIES

3.1. Turbofan

The New Commercial Modular Aero-Propulsion System Sim-
ulation (N-CMAPSS) dataset (Arias Chao, Kulkarni, Goebel,
& Fink, 2021) offers comprehensive degradation trajectories
of turbofan engines until failure. Among the dataset’s eight
subsets, we focus on DS003, characterized by a failure mode
impacting the efficiency and flows of both low-pressure and
high-pressure turbines.

The N-CMAPSS dataset characterizes degradation at the com-
ponent level across initial, normal, and abnormal degradation
stages. Consequently, an HI is calculated through a non-
linear mapping of operational margins under reference con-
ditions. System failure is determined when the HI reaches 0.
The dataset also accounts for between-flight maintenance by
allowing improvements in engine health parameters within
specified limits. The ground truth HI is shown in Figure 2,
and will be used to verify the findings of Section 2.3 and 2.4.
Estimating the HI using condition monitoring data as high-
lighted in (Bajarunas et al., 2023) is also possible.

Figure 2. Observed HI in N-CMAPSS DS03 Dataset

The Akaike Information Criterion (AIC) (Akaike, 1974) was
used to compare the goodness of fit with different probabil-
ity distributions (Weibull, Gamma, Exponential), see Table

1. When a statistical model is used to represent the process
that generated some data, some information is lost. The AIC,
based on information theory, estimates the amount of infor-
mation lost. It deals both with overfitting and underfitting by
taking model simplicity into account as well as goodness of
fit. The AIC is defined by

AIC = −2log(maxL) + 2P (43)

where the term log(maxL) denotes the maximum value of the
log-likelihood function, and P is the number of parameters in
the model ( for instance,for Weibull or Gamma, P is equal to
2). In our example, the best value of the AIC was obtained
with the Gamma distribution for the time to failure as well as
the time to reach level s for s ranging from 0 to 0.8. The AIC
value for Weibull distribution is almost identical. In contrast,
the AIC value for the exponential distribution is much higher.

Using the Maximum Likelihood Estimation technique, we es-
timated the best-fit Gamma parameters for various s thresh-
olds. Figure 3 shows the estimated βs and λs values for
s = [0, 0.1, 0.2, ..., 0.8]. The results validate the conclusion
presented in Section 2.3: the distribution of the first hitting
time Ts shares the same shape factor β = 52.83 as the distri-
bution of failure times T . Additionally, the rate parameter λs
is a function of s and λ of T . We determined p = 3.35 fol-
lowing the description provided in Section 2.5. The wide con-
fidence intervals of βs and λs can be primarily attributed to
the limited number of observations (15 run-to-failure curves),
rather than to the choice of the Gamma distribution, which we
have demonstrated to be the most suitable among the alterna-
tive distributions investigated.

We then estimated the best-fit Weibull parameters for vari-
ous s thresholds. In Figure 4, we estimated βs and ηs using
s = [0, 0.1, 0.2, ..., 0.8]. The results validate the conclusion
presented in Section 2.4: the distribution of the first hitting
time Ts shares the same shape factor β = 7.32 as the distri-
bution of failure times T . Additionally, the scale parameter
ηs is a function of s and η of T .

Figure 5 illustrates the mean, median, and 90% quantile of
HI(t), as described by equations (36) and (37). Notably, we
observe that the median closely aligns with the ground truth
HI within the dataset.

3.2. Battery

The methodology proposed in this study was further validated
using a dataset obtained from the NASA Ames Prognostics
Center of Excellence repository, specifically focusing on bat-
tery usage patterns (Bole, Kulkarni, & Daigle, 2014). This
dataset includes information collected from individual 18650
LCO cells undergoing various charging and discharging cy-
cles following randomized protocols.

Batteries commonly exhibit several physical aging mecha-

6
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(a) βs

(b) λs

Figure 3. The Gamma distribution shape factor βs and the
rate parameter λs for various HI thresholds for N-CMAPSS
dataset.

Table 1. AIC of distribution fits for CMAPSS turbofan case
study.

s AIC Gamma AIC Weibull AIC Exponential
0 118 120 161

0.1 117 120 161
0.2 117 120 160
0.3 116 119 159
0.4 115 118 158
0.5 114 116 156
0.6 112 114 154
0.7 109 112 151
0.8 106 108 147
0.9 116 113 127

nisms such as graphite exfoliation, electrolyte loss, solid elec-
trolyte interface layer formation, continuous thickening, and
lithium plating, among others (Sui et al., 2021). These aging
processes lead to two primary changes in battery behavior:
capacity degradation and increased internal resistance. In this
analysis, our focus will be on capacity degradation as the key
health index for the batteries under investigation.

The HI of a battery is defined as the ratio between its cur-
rent capacity and the nominal capacity (Q/Qnominal). The
battery’s capacity can be determined by reference discharge
cycles conducted at a constant current (I). The current ca-
pacity is calculated as the integral of current over the entire

(a) βs

(b) ηs

Figure 4. The Weibull distribution shape factor βs and the
scale factor ηs for various HI thresholds for N-CMAPSS
dataset.

Figure 5. The mean, median, and 90% quantile of the health
index obtained from Weibull distribution.

reference discharge cycle, denoted as
∫
t
I .

In this work, the failure of a battery (HI = 0) is defined once
the capacity ratio is less than 60%. The initial HI of the bat-
tery is equal to the initial capacity ratio. Figure 6 shows the
estimated HI of the NASA battery dataset.

The AIC values of three different distribution fits are shown
in Table 2. The best fit was obtained with Gamma distribu-
tion for the time to failure as well as the time to reach level s
for s ranging from 0 to 0.9. The AIC value for Weibull dis-

7
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Figure 6. Observed HI in NASA battery dataset

tribution is almost identical,in contrast with the exponential
distribution AIC, much higher.

We employed the Maximum Likelihood technique to estimate
the best-fit Gamma parameters for various s thresholds. In
Figure 7, we estimated βs and λs using s = [0, 0.1, 0.2, ..., 0.8].
Once more, we illustrate that a reasonably good approxima-
tion for the shape parameter βs of the first hitting time is the
shape parameter β of T. Following the estimation of p = 0.94,
we demonstrate that the rate parameter λs varies with s and
λ. Since p < 1, the HI curve is now convex, as observed.

(a) βs

(b) λs

Figure 7. The Gamma distribution shape factor βs and the
rate parameter λs for various HI thresholds for NASA battery
dataset.

The best-fit Weibull parameters for various s thresholds are
shown in Figure 8. Once again, we show that a reasonably
good approximation for the shape parameter of the first hit-
ting time βs is the shape parameter β of the failure time T and
that the scale parameter ηs varies with s and η as expected.

(a) βs

(b) ηs

Figure 8. The Weibull distribution shape factor βs and the
scale factor ηs for various HI thresholds for NASA battery
dataset.

Table 2. AIC of other distribution fits for NASA battery case
study.

s AIC Gamma AIC Weibull AIC Exponential
0.0 118 121 151
0.1 111 118 146
0.2 104 112 140
0.3 102 108 135
0.4 97 102 128
0.5 84 93 118
0.6 67 75 109
0.7 62 70 99
0.8 54 60 89
0.9 44 50 71

4. SENSITIVITY ANALYSIS

Sensitivity analysis has been conducted on the N-CMAPSS
dataset, to investigate the effect of the exponent p in the para-
metric model of the health index.

For the Gamma case, it is immediate from (16) that, for given

8
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s, λs is a decreasing function of p (for p greater than, or equal
to 1). In the limit of p going to infinity, λs converges to λ.
For the Weibull case, a similar conclusion is drawn, but in-
stead from (32) it follows that, for given s, ηs is an increasing
function of p.

From (18) and (34) it follows that for both considered distri-
butions the average time to reach threshold s, E(Ts), is an
increasing function of p, as illustrated in Figure 9.

For both distributions, when p increases, the average value of
the HI is first higher than, and subsequently (for greater val-
ues of the time variable t), lower than, the HI corresponding
to a lower value of p. Increasing p corresponds to delaying
the decrease in HI, i.e., delaying the onset of the degradation;
but, once the degradation occurs, it is more sudden. See Fig-
ure 10 for an illustration.

Figure 9. Gamma and Weibull distribution E[Ts] as a func-
tion of s for three values of p. N-CMAPSS dataset.

5. CONCLUSION AND PERSPECTIVES

This study has successfully addressed the problem of analyt-
ically modeling health indices (HI) in cases where the time-
to-failure follows either a Gamma or Weibull distribution. By
leveraging observed health index trajectories over time and
specifically the failure times, we have derived an analytical
form for the health index that is consistent with these observa-
tions. Additionally, we provided an analytical expression for
the distribution of the time to reach any intermediate degra-
dation level.

The availability of closed-form expressions for the health in-
dex is highly beneficial for implementing predictive main-
tenance strategies, particularly for estimating the remaining
useful life (RUL) distribution. Furthermore, once a health in-
dex function is derived for a particular application, it can po-
tentially serve as a foundation for similar applications, such
as the same asset under different operating conditions or a
slightly modified asset. Without an analytical characteriza-
tion, a new health index would need to be learned from scratch
for each new dataset.

(a) Gamma distribution E[HI(t)] as a function of t for three values
of p. N-CMAPSS dataset.

(b) Weibull distribution E[HI(t)] as a function of t for three values
of p.

Figure 10. Sensitivity to various p for the turbofan case study.
N-CMAPSS dataset.

Future work could extend this approach to other TTF distri-
butions and other HI formulations by applying the general
methodology outlined in Section 2.2. Additionally, an im-
portant extension of this work could be the use of quantile
regression and extrapolation of the HI from individual degra-
dation trajectories. More broadly, the analytical health in-
dex approach represents a significant advancement in survival
analysis, offering opportunities to integrate machine learning
techniques, particularly ’deep survival’ methods, with tradi-
tional reliability engineering.
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