Integrating Network Theory and SHAP Analysis for Enhanced RUL Prediction in Aeronautics

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 27, 2024
Yazan Alomari Marcia Baptista Mátyás Andó

Abstract

The prediction of Remaining Useful Life (RUL) in aerospace engines is a challenge due to the complexity of these systems and the often-opaque nature of machine learning models. This opaqueness complicates the usability of predictions in scenarios where transparency is crucial for safety and operational decision-making. Our research introduces the machine learning framework that significantly improves both the interpretability and accuracy of RUL predictions. This framework incorporates SHapley Additive exPlanations (SHAP) with a surrogate model and Network Theory to clarify the decision-making processes in complex predictive models and enhance the understanding of the hidden pattern of features interaction. We developed a Feature Interaction Network (FIN) that uses SHAP values for node sizing and SHAP interaction values for edge weighting, offering detailed insights into the interdependencies among features that affect RUL predictions. Our approach was tested across 44 engines, showing RMSE values between 2 and 17 and NASA Scores from 0.2 to 1.5, indicating an increase in prediction accuracy. Furthermore, regarding interpretability the application of our FIN, revealed significant interactions among corrective speed and critical temperature points key factors in engine efficiency and performance.

How to Cite

Alomari, Y., Baptista, M., & Andó, M. . (2024). Integrating Network Theory and SHAP Analysis for Enhanced RUL Prediction in Aeronautics. PHM Society European Conference, 8(1), 15. https://doi.org/10.36001/phme.2024.v8i1.4077
Abstract 235 | PDF Downloads 104

##plugins.themes.bootstrap3.article.details##

Keywords

Remaining Useful Life (RUL), aerospace, interpretability, SHAP, SHapley Additive exPlanations, Prognostics and Health Management (PHM)

References
Alomari, Y., & Andó, M. (2024). SHAP-based insights for aerospace PHM: Temporal feature importance, dependencies, robustness, and interaction analysis. Results in Engineering, 21. https://doi.org/10.1016/j.rineng.2024.101834

Alomari, Y., Andó, M., & Baptista, M. L. (2023a). Advancing aircraft engine RUL predictions: an interpretable integrated approach of feature engineering and aggregated feature importance. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-40315-1 Alomari, Y., Andó, M., & Baptista, M. L. (2023b). Advancing aircraft engine RUL predictions: an interpretable integrated approach of feature engineering and aggregated feature importance. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-40315-1 Aremu, O. O., Cody, R. A., Hyland-Wood, D., & McAree, P.

R. (2020). A relative entropy based feature selection framework for asset data in predictive maintenance. Computers & Industrial Engineering, 145, 106536. https://doi.org/10.1016/J.CIE.2020.106536 Baptista, M. L., Goebel, K., & Henriques, E. M. P. (2022).

Relation between prognostics predictor evaluation metrics and local interpretability SHAP values. Artificial Intelligence, 306, 103667. https://doi.org/10.1016/J.ARTINT.2022.103667 Berghout, T., & Benbouzid, M. (2022). A Systematic Guide for Predicting Remaining Useful Life with Machine Learning. Electronics 2022, Vol. 11, Page 1125, 11(7), 1125. https://doi.org/10.3390/ELECTRONICS11071125 Borgatti, S. P., & Halgin, D. S. (2011). On Network Theory.

Organization Science, 22(5), 1168–1181. https://doi.org/10.1287/orsc.1100.0641 Calabrese, F., Regattieri, A., Botti, L., Mora, C., & Galizia,

F. G. (2020). Unsupervised fault detection and prediction of remaining useful life for online prognostic health management of mechanical systems. Applied Sciences (Switzerland), 10(12), 4120. https://doi.org/10.3390/APP10124120 Cao, Y., Jia, M., Ding, P., & Ding, Y. (2021). Transfer learning for remaining useful life prediction of multiconditions bearings based on bidirectional-GRU network. Measurement, 178, 109287. https://doi.org/10.1016/J.MEASUREMENT.2021.109 287 Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2021).

Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. NASA Ames Research Center, Moffett Field.

Chen, Z., Wu, M., Zhao, R., Guretno, F., Yan, R., & Li, X.

(2021). Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach. IEEE Transactions on Industrial Electronics, 68(3), 25212531. https://doi.org/10.1109/TIE.2020.2972443 Chen, Z., Wu, M., Zhao, R., Guretno, F., Yan, R., Member, S., & Li, X. (2021). Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 68(3). https://doi.org/10.1109/TIE.2020.2972443 Cheng, Y., Hu, K., Wu, J., Zhu, H., & Shao, X. (2022). Autoencoder Quasi-Recurrent Neural Networks for Remaining Useful Life Prediction of Engineering Systems. IEEE/ASME Transactions on Mechatronics, 27(2), 1081–1092. https://doi.org/10.1109/TMECH.2021.3079729 Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN EncoderDecoder for Statistical Machine Translation. ArXiv Preprint ArXiv. De Meo, P., Ferrara, E., Fiumara, G., & Provetti, A. (2011). Generalized Louvain Method for Community Detection in Large Networks. https://doi.org/10.1109/ISDA.2011.6121636 Deutsch, J., & He, D. (2018). Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(1), 11–20. https://doi.org/10.1109/TSMC.2017.2697842 Duc Nguyen, V., Kefalas, M., Yang, K., Apostolidis, A., Olhofer, M., Limmer, S., & Bäck, T. (2019). A Review: Prognostics and Health Management in Automotive and Aerospace. International Journal of Prognostics and Health Management, 10(2), 35. https://www.klm.com/corporate/en/publications/2015 Ensarioğlu, K., İnkaya, T., & Emel, E. (2023). Remaining Useful Life Estimation of Turbofan Engines with Deep Learning Using Change-Point Detection Based Labeling and Feature Engineering. Applied Sciences 2023, Vol. 13, Page 11893, 13(21), 11893. https://doi.org/10.3390/APP132111893 Ferreira, C., & Gonçalves, G. (2022). Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods. Journal of Manufacturing Systems, 63, 550–562. https://doi.org/10.1016/J.JMSY.2022.05.010 Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441. https://doi.org/10.1093/biostatistics/kxm045 Guo, R., Li, H., Huang, C., Zhao, C., Huang, X., Liu, H., Li, J., & Chen, R. (2022). A sequence-to-sequence remaining useful life prediction method combining unsupervised LSTM encoding-decoding and temporal convolutional network. Measurement Science and Technology, 33(8), 085013. https://doi.org/10.1088/1361-6501/AC632D Khan, T., Ahmad, K., Khan, J., Khan, I., & Ahmad, N. (2022). An Explainable Regression Framework for Predicting Remaining Useful Life of Machines. 2022 27th International Conference on Automation and

Computing: Smart Systems and Manufacturing, ICAC 2022. https://doi.org/10.1109/ICAC55051.2022.9911162 Kobayashi, K., Almutairi, B., Sakib, M. N., Chakraborty, S., & Alam, S. B. (2023). Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life. https://arxiv.org/abs/2301.06676v1 Kononov, E., Klyuev, A., & Tashkinov, M. (2023). Prediction of Technical State of Mechanical Systems Based on Interpretive Neural Network Model. Sensors 2023, Vol. 23, Page 1892, 23(4), 1892. https://doi.org/10.3390/S23041892 Koutroulis, G., Mutlu, B., & Kern, R. (2022). Constructing robust health indicators from complex engineered systems via anticausal learning. Engineering Applications of Artificial Intelligence, 113. https://doi.org/10.1016/j.engappai.2022.104926 Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable Decision Sets: A Joint Framework for Description and Prediction. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1675–1684. https://doi.org/10.1145/2939672.2939874 Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799–834. https://doi.org/10.1016/J.YMSSP.2017.11.016 Li, A., Yang, X., Dong, H., Xie, Z., & Yang, C. (2018). Machine learning-based sensor data modeling methods for power transformer PHM. Sensors (Switzerland), 18(12). https://doi.org/10.3390/s18124430 Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering and System Safety, 172, 1–11. https://doi.org/10.1016/j.ress.2017.11.021 Liu, B., Gao, Z., Lu, B., Dong, H., & An, Z. (2022). SALCNN: Estimate the Remaining Useful Life of Bearings Using Time-frequency Information. https://arxiv.org/abs/2204.05045v1 Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems. https://github.com/slundberg/shap Maulana, F., Starr, A., & Ompusunggu, A. P. (2023). Explainable Data-Driven Method Combined with Bayesian Filtering for Remaining Useful Lifetime Prediction of Aircraft Engines Using NASA CMAPSS Datasets. Machines, 11(2). https://doi.org/10.3390/machines11020163
Section
Technical Papers