References
Alomari, Y., & Andó, M. (2024). SHAP-based insights for aerospace PHM: Temporal feature importance, dependencies, robustness, and interaction analysis. Results in Engineering, 21. https://doi.org/10.1016/j.rineng.2024.101834
Alomari, Y., Andó, M., & Baptista, M. L. (2023a). Advancing aircraft engine RUL predictions: an interpretable integrated approach of feature engineering and aggregated feature importance. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-40315-1 Alomari, Y., Andó, M., & Baptista, M. L. (2023b). Advancing aircraft engine RUL predictions: an interpretable integrated approach of feature engineering and aggregated feature importance. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-40315-1 Aremu, O. O., Cody, R. A., Hyland-Wood, D., & McAree, P.
R. (2020). A relative entropy based feature selection framework for asset data in predictive maintenance. Computers & Industrial Engineering, 145, 106536. https://doi.org/10.1016/J.CIE.2020.106536 Baptista, M. L., Goebel, K., & Henriques, E. M. P. (2022).
Relation between prognostics predictor evaluation metrics and local interpretability SHAP values. Artificial Intelligence, 306, 103667. https://doi.org/10.1016/J.ARTINT.2022.103667 Berghout, T., & Benbouzid, M. (2022). A Systematic Guide for Predicting Remaining Useful Life with Machine Learning. Electronics 2022, Vol. 11, Page 1125, 11(7), 1125. https://doi.org/10.3390/ELECTRONICS11071125 Borgatti, S. P., & Halgin, D. S. (2011). On Network Theory.
Organization Science, 22(5), 1168–1181. https://doi.org/10.1287/orsc.1100.0641 Calabrese, F., Regattieri, A., Botti, L., Mora, C., & Galizia,
F. G. (2020). Unsupervised fault detection and prediction of remaining useful life for online prognostic health management of mechanical systems. Applied Sciences (Switzerland), 10(12), 4120. https://doi.org/10.3390/APP10124120 Cao, Y., Jia, M., Ding, P., & Ding, Y. (2021). Transfer learning for remaining useful life prediction of multiconditions bearings based on bidirectional-GRU network. Measurement, 178, 109287. https://doi.org/10.1016/J.MEASUREMENT.2021.109 287 Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2021).
Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. NASA Ames Research Center, Moffett Field.
Chen, Z., Wu, M., Zhao, R., Guretno, F., Yan, R., & Li, X.
(2021). Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach. IEEE Transactions on Industrial Electronics, 68(3), 25212531. https://doi.org/10.1109/TIE.2020.2972443 Chen, Z., Wu, M., Zhao, R., Guretno, F., Yan, R., Member, S., & Li, X. (2021). Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 68(3). https://doi.org/10.1109/TIE.2020.2972443 Cheng, Y., Hu, K., Wu, J., Zhu, H., & Shao, X. (2022). Autoencoder Quasi-Recurrent Neural Networks for Remaining Useful Life Prediction of Engineering Systems. IEEE/ASME Transactions on Mechatronics, 27(2), 1081–1092. https://doi.org/10.1109/TMECH.2021.3079729 Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN EncoderDecoder for Statistical Machine Translation. ArXiv Preprint ArXiv. De Meo, P., Ferrara, E., Fiumara, G., & Provetti, A. (2011). Generalized Louvain Method for Community Detection in Large Networks. https://doi.org/10.1109/ISDA.2011.6121636 Deutsch, J., & He, D. (2018). Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(1), 11–20. https://doi.org/10.1109/TSMC.2017.2697842 Duc Nguyen, V., Kefalas, M., Yang, K., Apostolidis, A., Olhofer, M., Limmer, S., & Bäck, T. (2019). A Review: Prognostics and Health Management in Automotive and Aerospace. International Journal of Prognostics and Health Management, 10(2), 35. https://www.klm.com/corporate/en/publications/2015 Ensarioğlu, K., İnkaya, T., & Emel, E. (2023). Remaining Useful Life Estimation of Turbofan Engines with Deep Learning Using Change-Point Detection Based Labeling and Feature Engineering. Applied Sciences 2023, Vol. 13, Page 11893, 13(21), 11893. https://doi.org/10.3390/APP132111893 Ferreira, C., & Gonçalves, G. (2022). Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods. Journal of Manufacturing Systems, 63, 550–562. https://doi.org/10.1016/J.JMSY.2022.05.010 Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441. https://doi.org/10.1093/biostatistics/kxm045 Guo, R., Li, H., Huang, C., Zhao, C., Huang, X., Liu, H., Li, J., & Chen, R. (2022). A sequence-to-sequence remaining useful life prediction method combining unsupervised LSTM encoding-decoding and temporal convolutional network. Measurement Science and Technology, 33(8), 085013. https://doi.org/10.1088/1361-6501/AC632D Khan, T., Ahmad, K., Khan, J., Khan, I., & Ahmad, N. (2022). An Explainable Regression Framework for Predicting Remaining Useful Life of Machines. 2022 27th International Conference on Automation and
Computing: Smart Systems and Manufacturing, ICAC 2022. https://doi.org/10.1109/ICAC55051.2022.9911162 Kobayashi, K., Almutairi, B., Sakib, M. N., Chakraborty, S., & Alam, S. B. (2023). Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life. https://arxiv.org/abs/2301.06676v1 Kononov, E., Klyuev, A., & Tashkinov, M. (2023). Prediction of Technical State of Mechanical Systems Based on Interpretive Neural Network Model. Sensors 2023, Vol. 23, Page 1892, 23(4), 1892. https://doi.org/10.3390/S23041892 Koutroulis, G., Mutlu, B., & Kern, R. (2022). Constructing robust health indicators from complex engineered systems via anticausal learning. Engineering Applications of Artificial Intelligence, 113. https://doi.org/10.1016/j.engappai.2022.104926 Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable Decision Sets: A Joint Framework for Description and Prediction. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1675–1684. https://doi.org/10.1145/2939672.2939874 Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799–834. https://doi.org/10.1016/J.YMSSP.2017.11.016 Li, A., Yang, X., Dong, H., Xie, Z., & Yang, C. (2018). Machine learning-based sensor data modeling methods for power transformer PHM. Sensors (Switzerland), 18(12). https://doi.org/10.3390/s18124430 Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering and System Safety, 172, 1–11. https://doi.org/10.1016/j.ress.2017.11.021 Liu, B., Gao, Z., Lu, B., Dong, H., & An, Z. (2022). SALCNN: Estimate the Remaining Useful Life of Bearings Using Time-frequency Information. https://arxiv.org/abs/2204.05045v1 Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems. https://github.com/slundberg/shap Maulana, F., Starr, A., & Ompusunggu, A. P. (2023). Explainable Data-Driven Method Combined with Bayesian Filtering for Remaining Useful Lifetime Prediction of Aircraft Engines Using NASA CMAPSS Datasets. Machines, 11(2). https://doi.org/10.3390/machines11020163