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ABSTRACT 

The prediction of Remaining Useful Life (RUL) in aerospace 

engines is a challenge due to the complexity of these systems 

and the often-opaque nature of machine learning models. 

This opaqueness complicates the usability of predictions in 

scenarios where transparency is crucial for safety and 

operational decision-making. Our research introduces the 

machine learning framework that significantly improves both 

the interpretability and accuracy of RUL predictions. This 

framework incorporates SHapley Additive exPlanations 

(SHAP) with a surrogate model and Network Theory to 

clarify the decision-making processes in complex predictive 

models and enhance the understanding of the hidden pattern 

of features interaction. We developed a Feature Interaction 

Network (FIN) that uses SHAP values for node sizing and 

SHAP interaction values for edge weighting, offering 

detailed insights into the interdependencies among features 

that affect RUL predictions. Our approach was tested across 

44 engines, showing RMSE values between 2 and 17 and 

NASA Scores from 0.2 to 1.5, indicating an increase in 

prediction accuracy. Furthermore, regarding interpretability 

the application of our FIN, revealed significant interactions 

among corrective speed and critical temperature points key 

factors in engine efficiency and performance.  

1. INTRODUCTION 

In the interdisciplinary domain of Prognostics and Health 

Management (PHM), the accurate prediction of Remaining 

Useful Life (RUL) for industrial assets has become 

paramount (Ren et al., 2023). As aerospace, automotive, and 

manufacturing sectors increasingly depend on the reliability 

of their machinery, accurately predicting maintenance needs 

has become essential for ensuring safety, maximizing 

efficiency, and reducing costs. This necessity has driven the 

shift from traditional prognostic methods to advanced 

machine learning techniques (Calabrese et al., 2020; Deutsch 

& He, 2018). These modern methods utilize large datasets to 

effectively identify complex patterns and trends in machinery 

wear and tear, significantly enhancing our ability to predict 

equipment failures (Duc Nguyen et al., 2019). 

However, the application of ML in PHM is limited by 

significant challenges, such as models interpretability. The 

"black box" nature of many ML algorithms, particularly those 

based on deep learning, obscures the decision-making 

processes underlying their predictions. This opacity is a 

considerable concern in fields when understanding the 'why' 

behind a prediction is as critical as the prediction itself, 

necessitating models that stakeholders can trust and interpret 

(Baptista et al., 2022; Kononov et al., 2023; Vollert et al., 

2021).  

Historical reliance on reliability and physics based models for 

RUL estimation, though effective, often staggers upon the 

complexities inherent in real-world operational scenarios. 

These traditional methods necessitate detailed domain 

knowledge and often lack the flexibility to adapt to different 

types of machinery (X. Li et al., 2018; Si et al., 2011; Yan et 

al., 2021). The integration of machine learning into PHM, 

especially with the advent of sophisticated algorithms and the 

increased availability of sensor data opens a new 

opportunities in RUL prediction. This new technologies is 

characterized by learning from historical performance data, 

detecting subtle patterns, and predicting future outcomes with 

increased accuracy (A. Li et al., 2018; Yang et al., 2020). 

The diversity and complexity of data in PHM, combined with 

the unique operational characteristics of different machinery, 

pose additional obstacles. These factors complicate the task 

of creating generalized models that are both accurate and 

interpretable across varied contexts (Lakkaraju et al., (2016). 

The need for models that can adapt to such diversity while 
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providing clear insights into their predictions is pressing 

(Rudin et al., 2022). 

In response to these challenges, our research presents a 

framework that integrates Network Theory with SHapley 

Additive exPlanations (SHAP) to enhance the accuracy and 

the interpretability of ML-based RUL predictions. Our 

contributions are manifold and aim to bridge the gap between 

complexity and explainability: 

I. Application of a SHAP Theory: We use a surrogate 

Model to translate complex interactions from deep 

learning models into SHAP interaction values. 

II. Application of Network Theory and FIN: The SHAP 

interaction values are mapped onto the Feature 

Interaction Network. This mapping provides a detailed 

analysis of feature interdependencies to improve our 

understanding of the factors that affect the reliability of 

machinery. 

III. Integration of SHAP and Network Theory: The 

proposed method combines SHAP values with Network 

Theory to develop an “augmented” Feature Interaction 

Network (FIN). This network helps clarify and quantify 

how different features interact and influence RUL 

predictions. 

The novelty of this research lies in the fusion of network 

theory with feature importance methodologies to decode the 

nuanced interplay of operational parameters. By applying a 

Feature Interaction Network (FIN), a structural map of 

feature interdependencies further enriched by the integration 

of SHAP values, we were quantifying and explain feature 

contributions. Central to this approach was the novel 

application of surrogate models, facilitating the distillation of 

SHAP interaction effects into discernible edge strengths 

within the FIN. Concurrently, the combination of mean 

absolute SHAP values with network centrality metrics allows 

positioning a more comprehensive description of feature 

significance and influence. This research aims to envelope an 

innovative yet pragmatic set of tools, that can enhance 

Explainability and interpretability of predictive maintenance 

practices.  

The paper is organized as follows: Section II surveys related 

literature, establishing the context for our contributions. 

Section III details our methodology, highlighting the 

synergistic use of SHAP analysis and Network Theory to 

decode ML model decisions. Section IV discusses the 

empirical findings, focusing on the insights gleaned from the 

FIN and its practical implications for PHM. Section V 

concludes, reflecting on the impact of our work and 

suggesting directions for future research in enhancing model 

transparency and reliability. 

2. BACKGROUND AND LITERATURE REVIEW 

In the field of prognostics and health management (PHM), 

the ability to accurately predict the Remaining Useful Life 

(RUL) of machinery is gaining traction (Lei et al., 2018; 

Ramezani et al., 2019; Zhao & Addepalli, 2020). This 

increased popularity is largely driven by advancements in 

machine learning and deep learning technologies. (Berghout 

& Benbouzid, 2022; Chen, Wu, Zhao, Guretno, Yan, 

Member, et al., 2021; Ferreira & Gonçalves, 2022). This 

review aims to summarize recent developments in RUL 

prediction, highlighting the evolution of methodologies and 

techniques across various industrial sectors. 

The significant improvements in RUL prediction began with 

the innovative preprocessing of sensor data. For instance, 

Ensarioğlu et al., (2023) introduced a method that combined 

difference-based feature construction with a hybrid 1D-

CNN-LSTM model, enhancing prediction accuracy 

significantly. Among the more notable preprocessing 

techniques is the sliding time window method, which 

organizes time-series signals into segments of equal length 

for more consistent input data (Guo et al., 2022). While 

effective, this method can be labor-intensive and somewhat 

dependent on the operator’s expertise. Another valuable 

technique is the short-time Fourier transform (STFT), which 

considers the time correlation of signal sequences, providing 

a robust basis for subsequent analyses (Liu et al., 2022; 

Zhang et al., 2023). Also, the integration of long and short-

term memory networks (LSTMs) with convolutional block 

attention modules has improved our understanding of neural 

decision-making processes (Remadna et al., 2023). The 

application of deep convolutional variational autoencoders 

equipped with attention mechanisms has improved the spatial 

distribution of features, thereby enhancing the interpretability 

of predictive models (Cheng et al., 2022).  

The interpretability of machine learning techniques in RUL 

prediction has seen significant advancements, particularly 

through the integration of attention mechanisms and feature 

fusion frameworks. An attention-based deep learning 

framework was developed to effectively combine 

handcrafted and automated features for accurate RUL 

prediction, demonstrating high efficiency performance on 

real datasets (Chen, Wu, Zhao, Guretno, Yan, & Li, 2021). 

Remadna et al., (2023) proposed a fusion of an attention-

based convolutional variational autoencoder with an 

ensemble learning classifier, achieving high accuracy and 

improved interpretability. Watson (2020) highlighted the 

conceptual challenges in interpretable machine learning 

(IML), emphasizing the need for clarity in target definitions 

and the importance of error rate considerations and testing for 

IML algorithms. Additionally, Xu et al., (2022) introduced an 

approaches combined deep learning with other techniques 

such as particle filters and knowledge distillation to enhance 

feature extraction, interpretability, and model compression 

for efficient RUL prediction. 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 551



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

3 

Ye & Yu, (2023) introduced the Selective Adversarial 

Adaptation Network (SAAN), an approach to domain 

adaptation employing selective feature interaction for 

effective knowledge transfer in machine RUL prediction 

under variable conditions. Kobayashi et al., (2023), also 

highlighted the critical need for transparency and 

interpretability in AI models, emphasizing the significance of 

Explainable AI (XAI) and Interpretable Machine Learning 

(IML) in RUL prediction in digital twin systems. Zou et al., 

(2021) proposed an approach for RUL prediction in small 

data scenarios using a fully convolutional variational auto-

encoding network, effectively addressing underfitting issues 

and demonstrating superior performance in degradation 

feature extraction and failure threshold determination 

compared to traditional models. 

LIME was proposed by(Ribeiro et al., 2016) as a local model-

agnostic approach to interpretability. It has been since then 

used extensively in prognostics and health management. 

LIME is a local-model because it approximates the learning 

model with an interpretable simplified surrogate around a 

single prediction. As a model0agnostic approach, LIME is a 

generic and works with any underlying predictive model.  

This method has been particularly useful for RUL prediction, 

as it allows engineers to understand the impact of different 

features on the predicted outcomes. For instance, Khan et al., 

(2022); Serradilla Oscar et al., (2020) demonstrated the 

efficacy of LIME in explaining RUL predictions, enabling a 

deeper understanding of the degradation patterns and 

contributing factors, thus facilitating more informed 

maintenance decisions.  

In a recent study, Alomari et al., (2023)developed a 

comprehensive method for predicting the Remaining Useful 

Life (RUL) of aircraft engines. Our approach integrates 

advanced feature engineering, dimensionality reduction 

through principal component analysis, and a range of feature 

selection techniques, including Genetic Algorithms, 

Recursive Feature Elimination, Least Absolute Shrinkage 

and Selection Operator Regression, and Feature Importances 

from Random Forest models. A significant innovation in this 

research is the introduction of the Aggregated Feature 

Importances with Cross-validation (AFICv) technique. This 

method enhances the selection process by prioritizing 

features based on their mean importance also establishes a 

selection criterion that retains features contributing up to 70% 

of the cumulative mean sum which is effectively simplifies 

the model complexity. Another finding in our research is 

introducing a novel PCA-based interpretability framework to 

provide actionable insights and enhance the practical utility 

of our findings for domain experts in the aerospace industry. 

2.1. Data Description 

The N-CMAPSS dataset (Chao et al., 2021) is a dataset that 

uses real flight conditions from a commercial jet to simulate 

the operative conditions (w) within its model. This dataset 

provides synthetic degradation trajectories for a fleet of 

turbofan engines, effectively replicating various unknown 

initial health states under authentic flight conditions. It 

includes eight distinct datasets derived from 128 engines, 

each illustrating seven unique failure modes. These modes 

predominantly affect the flow (F) and efficiency (E) of key 

engine components such as the fan, low-pressure compressor 

(LPC), high-pressure compressor (HPC), high-pressure 

turbine (HPT), and low-pressure turbine (LPT). 

Flight conditions within the N-CMAPSS model are 

categorized into three distinct classes based on the length of 

the flight. The details of these flight classes, along with the 

specific failure modes for each dataset, are meticulously 

documented in Table 1 (4 datasets were used only from the 

entire original dataset). Additionally, the dataset provides 

extensive information on the  scenario descriptors as in Table 

1, and measurements and virtual sensors, which are 

thoroughly described in the turbofan Jet engine schematic 

representation Figure 1 and Table 2. This structured approach 

in modeling the failure modes and operational conditions 

forms the backbone of the current model development, 

offering a realistic and detailed perspective of engine 

degradation under varied flight scenarios. 

Table 1 N-CMAPSS Datasets overview 

Name # Units Flight 

Classes 

Failure Modes 

DS01 10 [1 - 2 - 3] 1 

DS02 9 [1 - 2 - 3] 2 

DS03 15 [1 - 2 - 3] 1 

DS05 10 [1 - 2 - 3] 1 

Figure 1 Turbofan Jet Engine Schematic Representation 

2.2. Data preprocessing and feature selection 

Standardization was applied to the dataset, as detailed in 

equations 1-3, normalizing each feature to have zero mean 

and unit variance. This step was essential for ensuring 

consistency across different data scales and enhancing the 

efficacy of the subsequent feature selection and machine 

learning models: 
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𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
𝑍 =  

𝑥 −  𝜇

𝜎
(1) 

𝑀𝑒𝑎𝑛 
𝜇 =  

1

𝑛
∑ (𝑥𝑖)

𝑛

𝑖=1

(2) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝜎 =  √
1

𝑛
∑ (𝑥𝑖 −  𝜇)2

𝑛

𝑖=1

(3) 

Feature selection is critical in prognostics and health 

management, offering substantial benefits for applications 

such as RUL prediction and fault detection. By eliminating 

redundant features, this process effectively reduces the input 

dimensions for machine learning models, thereby enhancing 

their performance by focusing on the most informative 

attributes (Alomari et al., 2023; Aremu et al., 2020). 

In this study, features are selected based on their statistical 

variability. Sensors that exhibit zero standard deviation, 

indicating no variation and thus no predictive value, have 

been excluded. An example of this selection process can be 

seen in Figure 2, which illustrates how sensors are chosen 

based on their variability over time. In Figure 2, features such 

as 'T2', 'W50', and 'Nc' exhibit fluctuating values, whereas 

other features remain constant, indicating they provide 

limited informational value to the mode. 

Figure 2 Variability Analysis of Sensor Data for Feature Selection

This selection was specifically tailored to exclude sensors 

with negligible fluctuations or redundant information, 

focusing instead on those providing significant insights into 

engine performance and wear. The final selected features are 

listed in Table 2. 

Table 2 list of the selected features 

alt Mach TRA T2 T24 

P24 Ps30 P40 P50 Nf 

T30 T48 T50 P15 P2 

Nc Wf T40 P30 P21 

3. METHODOLOGY

The methodology, illustrated in Figure 3, is based on a 

composite model integrating Deep Gated Recurrent Units 

(GRU), Convolutional Neural Networks (CNN), a 

customized Time Distributed Attention mechanism, and an 

innovative Feature Interaction Network (FIN). The goals are 

to improved the precision and interpretability of RUL 

predictions for aircraft engines.  

The GRU layers illustrated in Figure 4 capture the temporal 

correlations within the sequential engine data, while the CNN 

layers distill critical spatial features, thereby enhancing the 

model's capability to identify salient patterns indicative of 

engine failure. The custom attention layer defined in Figure 

5 allows to selectively simplify temporal events within the 

engine's operational history, further refining the model’s 

predictive accuracy.  

To enhance interpretability, the FIN, constructed using 

SHAP (SHapley Additive exPlanations) values shown in 

Figure 10, quantifies the impact and interactions of individual 

features. The node’s size within the FIN is representative of 

the mean absolute SHAP values. This allows better 

demonstration the feature importance visually. Edge weights 

are defined by SHAP interaction values, illustrating the 

strength of the interaction between each pair of features.   
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The methodological combination of GRU, CNN, attention 

mechanisms, and SHAP-driven FIN proffers a 

multidimensional interpretable approach, in the field of 

aerospace prognostics and health management. 

Figure 3 proposed model for RUL prediction and FIN 

Figure 4 Gated recurrent unit (GRU) neural network 

structure 

The GRU, presented in Figure 4, introduced by (Cho et al., 

2014), is a type of recurrent neural network designed to 

model temporal sequences and long-range dependencies 

more effectively than standard RNNs. They simplify the 

recurrent module while retaining the ability to capture 

dependencies in time-series data, making them 

computationally efficient and powerful for tasks such as 

speech recognition, language modeling, and sequential 

prediction, which are crucial in PHM contexts (Cao et al., 

2021; Zhou et al., 2022, Zhou et al., 2023). The core 

functionality of GRUs relies on the modulation of 

information flow across sequence steps, controlled by the 

update and reset gates. 
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Figure 5 time-distributed attention mechanism 

After the GRU layers, a customized Time Distributed 

Attention mechanism (see Figure 5) was used to improve the 

model's ability to focus on the most critical features within 

the sequential data. It applies an attention mechanism to each 

time step independently. This is achieved by computing an 

attention score for each feature using a learned weight matrix 

and bias vector. The scores are then normalized via a softmax 

function to create attention weights, which are subsequently 

used to scale the input features. This process allows the model 

to dynamically prioritize significant information, thereby 

improving the interpretability and accuracy of RUL 

predictions. 

3.1. SHapley Additive exPlanations (SHAP) 

In the field of explainable artificial intelligence (XAI), 

Shapley Additive exPlanations (SHAP) (Lundberg et al., 

2017) values  are a central tool for quantifying the 

contributions of individual features to a model's prediction. 

Rooted in cooperative game theory, SHAP values, formally 

described in Equation (4), enable the measurement of each 

feature's influence by comparing the model's output with and 

without the presence of the feature. This approach not only 

fosters transparency but also imbues the analysis with a 

rigorous mathematical foundation. 

SHAP is crucial to PHM (Alomari & Andó, 2024) where 

understanding the impact of various features on the 

prediction of system failures or maintenance needs is 

paramount. SHAP values facilitate this by attributing precise, 

quantifiable contributions of individual features to the overall 

prediction of system health, thereby enabling more accurate 

and timely decision-making. 

SHAP(𝑗) = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!𝑆⊆𝑁∖{𝑗}

[𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)] 
(4) 

𝑆 - is a subset of features
𝑁 - is the set of all features
|𝑆| - denotes the cardinality (size) of set 𝑺
𝑓(𝑆 ∪ {𝑗}) - is the prediction with both the features in set 

𝑺 and feature 𝒋 
𝑓(𝑆) - is the prediction with just the features in set 

𝑺

Equation (4) computes the contribution of feature j by 

iterating over all possible subsets S of the remaining features 

in N and comparing the difference in the prediction when 

feature j is included versus when it is excluded. 

3.2. Network Theory 

Network Theory (Borgatti & Halgin, 2011) provides a 

framework for understanding the structure and dynamics of 

complex systems by visualizing them as networks of nodes 

(features) and edges (interactions). This approach is 

especially useful in PHM, to reveal the complex 

interdependencies between system components. By applying 

Network Theory to create a Feature Interaction Network 

(FIN), we can perform both visual and quantitative analyses 

of how individual system features interact and collectively 

impact overall system behavior (see Figure 6). The decision 

to use a FIN was deliberate; it helps in mapping out the 

relationships and dependencies among features effectively 

and also simplifies the understanding of complex data 

structures for engineers and domain experts. 

To accurately model the interactions within a FIN, the 

Graphical Lasso (GLasso) algorithm (Friedman et al., 2008) 

was utilized. GLasso effectively determines the conditional 

independence structure between variables (features), offering 

a sparse representation of the feature interaction network. The 

mathematical formulation of Glasso (Equation 5) is centered 

on optimizing the following objective function: 

𝑚𝑖𝑛
Θ

− 𝑙𝑜𝑔 det(Θ) + 𝑡𝑟(𝒮Θ) + 𝜆‖Θ‖1
(5) 

Here, Θ represents the precision matrix (inverse covariance 

matrix) to be estimated, 𝒮 is the empirical covariance matrix 

of the data, 𝑙𝑜𝑔 det(Θ) ensures the positive definiteness of Θ, 

𝑡𝑟(𝒮Θ) is the trace term encouraging fidelity to the observed 

data, ‖Θ‖1 denotes the L1 norm imposing sparsity, and 𝜆 is a

regularization parameter controlling the degree of sparsity. 

By solving this optimization problem, GLasso identifies 

significant interactions while discarding the insignificant, 

resulting in a FIN that highlights the most crucial feature 

relationships. 
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Figure 6 Basic FIN graph with interaction strength 

Within the framework of Network Theory, centrality 

measures serve as tools to compute the prominence of 

individual nodes. The centrality measures, namely degree 

centrality for direct linkages, betweenness centrality for 

intermediary influence, and closeness centrality for overall 

accessibility are presented in equations (6-8), are 

instrumental in discerning the structural backbone of the 

Feature Interaction Network.  

Degree centrality (𝑪𝑫) of a node 𝑣 is defined as the fraction

of nodes it is connected to. It reflects the immediate influence 

of a node within the network. 

𝐶𝐷(𝑣) =
deg(𝑣)

𝑁 − 1

(6) 

Where deg(𝑣) is the degree of node 𝑣 (i.e., the number of 

edges incident to 𝑣 and 𝑁 is the total number of nodes in the 

network. Degree centrality helps us pinpoint features that 

exert considerable control over the system's behavior, thereby 

identifying potential points of proactive maintenance and 

intervention. 

Betweenness centrality (𝑪𝑩)  of a node 𝑣  quantifies the

number of times a node acts as a bridge along the shortest 

path between two other nodes. 

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝒮≠𝑣≠𝑡

(7) 

Where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝒮
to node 𝑡 and 𝜎𝑠𝑡(𝑣) is the number of those paths that pass

through 𝑣 , it highlights the node's role in facilitating 

interactions between other nodes. Identifying such nodes 

helps in strategizing interventions that can prevent cascading 

failures in engine operations. 

Closeness centrality 𝑪𝒄(𝒗) measures how close a node is to

all other nodes in the network, indicating how easily 

information can flow from the given node to others. 

𝐶𝑐(𝑣) =  
𝑁−1

∑ 𝑑(𝑣,𝑢)𝑢≠𝑣

(8) 

Where 𝑑(𝑣, 𝑢) is the shortest path distance between nodes 𝑣 

and 𝑢, and 𝑁 is the total number of nodes in the network. 

Features with high closeness centrality are likely to affect the 

system more rapidly, making them critical targets for 

monitoring and early preventive maintenance. 

Community detection algorithms, such as the Louvain 

method (De Meo et al., 2011) given by equation (9), partition 

the network into communities or clusters of nodes that are 

more densely connected with each other than with the rest of 

the network. This segmentation can reveal modular structures 

within the feature set, suggesting subsystems within the 

engine that have distinct behaviors. 

𝑄 =
1

2𝑀
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝑖𝑗 𝛿(𝑐𝑖  , 𝑐𝑗) (9) 

The following definitions characterize the parameters of the 

algorithms 

- 𝐴𝑖𝑗  represents the weight of the edge between nodes 𝑖

and 𝑗. For unweighted networks, 𝐴𝑖𝑗  is 1 if there is an

edge between 𝑖 and 𝑗, and 0 otherwise.

- 𝑘𝑖  𝑎𝑛𝑑 𝑘𝑗  are the sum of the weights of the edges

attached to nodes 𝑖 and 𝑗, respectively.

- 𝑚 is the sum of all the edge weights in the network.

- 𝑐𝑖  𝑎𝑛𝑑 𝑐𝑗 are the communities of nodes 𝑖 and 𝑗

- 𝛿 is the Kronecker delta function, which is 1 if 𝑐𝑖 = 𝑐𝑗

(i.e., nodes 𝑖  and 𝑗 are in the same community) and 0

otherwise.

The goal of the Louvain method is to maximize 𝑄 through a 

heuristic approach that iteratively groups nodes into 

communities. 

3.3. Evaluation metrics 

The proposed model evaluation was conducted using the N-

CMAPSS datasets (DS01, DS02, DS03 and DS05), focusing 

on the accuracy of Remaining Useful Life (RUL) predictions. 

The performance of our proposed model was primarily 

assessed by measuring the discrepancy between the predicted 

and actual RUL values. For this purpose, we employed two 

key metrics: Root Mean Square Error (RMSE) and NASA 

Score (Saxena et al., 2008), as defined in equations (10 - 13). 

These metrics, calculated over the number of data points (n), 

provided a comprehensive understanding of the model's 
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predictive accuracy and reliability in various operational 

scenarios presented within the N-CMAPSS datasets. 

𝑅𝑀𝑆𝐸 (𝑃𝑅𝑈𝐿 , 𝑇𝑅𝑈𝐿) =  √
1

𝑛
∑(𝑃𝑅𝑈𝐿 − 𝑇𝑅𝑈𝐿)2

𝑛

𝑖=1

(10) 

NASA Score𝑖  =  {
𝑒𝑥𝑝 (−

∆𝑖

10
) − 𝑖𝑓 ∆𝑖  < 0

𝑒𝑥𝑝 (−
∆𝑖

13
) − 𝑖𝑓 ∆𝑖 ≥ 0

Where: 

∆𝑖= 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖
− 𝑅𝑈𝐿𝑡𝑟𝑢𝑒𝑖

(11) 

(12) 

𝑁𝐴𝑆𝐴 𝑆𝑐𝑜𝑟𝑒 =  
1

𝑛
∑ 𝑁𝐴𝑆𝐴 𝑆𝑐𝑜𝑟𝑒𝑖

𝑛

𝑖=1

(13) 

4. RESULTS AND DISCUSSION

Our enhanced approach to predicting Remaining Useful Life 

(RUL) uses an integration of Deep Gated Recurrent Units 

(GRU), Convolutional Neural Networks (CNN), and a 

custom Time Distributed Attention mechanism. This tailored 

combination has advanced the accuracy of RUL predictions 

by effectively capturing complex temporal and spatial 

patterns within engine operational data, crucial for early and 

accurate fault detection. The inclusion of the Custom 

Attention Layer allows for identifying critical features and 

time steps, significantly refining the interpretability of our 

predictive models. The effectiveness of these innovations is 

substantiated by our empirical results presented in Tables 3 

and 4. Table 3 includes a comparison of some of our results 

with three methods from the literature, while Table 4 presents 

the results for the remaining engines, for which no direct 

comparisons to existing studies could be made.  

Across the different datasets, the model demonstrates 

proficiency in RUL prediction, as evidenced by the calculated 

Root Mean Square Error (RMSE) and the NASA prognostics 

score, with a significant performance in the critical RUL 

phase. This is important since the latter half of life where 

accurate prediction is most vital. Particularly significant are 

the outcomes on DS02 and DS03, where the model achieves 

RMSE values as low as 2 cycles for the critical RUL, 

alongside correspondingly low NASA-scores, highlighting 

the model's precision in the most consequential phase of the 

engine's lifecycle. 

The visualization of the RUL prediction and critical RUL of 

two engines, 9 and 12, from DS01 and DS03, respectively, 

along with their SHAP values, is presented in Figures 7 and 

8. These figures illustrate the model's ability to track the

Remaining Useful Life (RUL) over engine cycles accurately,

with a particular focus on the critical RUL phase. The SHAP

interpretation plots highlight the influence of various sensors

on the model's predictions.

For Engine 12, significant features include 'Nc' (corrective 

speed), 'P50' (pressure at the fan outlet), and 'T2' (temperature 

at the fan inlet). The high SHAP values for these features 

indicate their substantial impact on the RUL predictions. 

Specifically, 'Nc' demonstrates a strong correlation with the 

engine's operational efficiency, reflecting its role in adaptive 

speed control. Similarly, 'P50' and 'T2' provide crucial 

insights into the pressure and temperature dynamics, essential 

for accurate prognostics. 

In Engine 9, the SHAP values reveal 'Nc', 'T50' (temperature 

at the engine outlet), and 'P2' (pressure at the fan inlet) as key 

contributors. The interactions between 'Nc' and 'T50' (as they 

have opposite influence) suggest that the corrective speed 

adjustments are heavily influenced by thermal conditions at 

critical engine points. The significant SHAP values for 'P2' 

underscore the importance of pressure measurements in 

anticipating engine failures. 

Table 3 Prognostics performance assessment comparison with different methods 

Dataset Engine RMSE Proposed RMSE Literature 

(Koutroulis et al., 2022) 

RMSE Literature LR+ 

(Maulana et al., 2023) 

RMSE Literature MLP+ 

(Maulana et al., 2023) 

DS02 11 4.7 5.1 11.4 11.5 

14 6.1 11.9 10.9 11.1 

15 4 5.8 8.9 18.2 

DS03 13 3.9 6.8 -- -- 

14 3.2 5.1 -- -- 

15 2.1 3.04 -- -- 
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Table 4 Comparative assessment of RMSE and NASA-Score metrics for RUL prediction across engine units 

Figure 3 RUL prediction of engine 9 of DS01 with SHAP summary 

Dataset Engine RMSE RMSE Critical RUL NASA-Score NASA-Score Critical RUL 

DS01 7 8.4 7 1.1 0.9 

8 6 4 0.6 0.5 

9 14 12 2.1 1.5 

10 5 3.5 0.5 0.37 

DS03 10 8 2.9 0.8 0.22 

11 8 3 0.8 0.25 

12 17 7.3 6.4 1 

DS05 7 10 3.8 1.9 0.37 

8 6 2.4 0.7 0.2 

9 7 3.6 0.8 0.27 

10 9 3.8 1.2 0.28 
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Figure 4 RUL prediction of engine 12 of DS03 with SHAP summary 

The Feature Interaction Network (FIN) in Figure 8 provides 

an overview of the complex relationships inherent in the 

proposed predictive model for Remaining Useful Life (RUL). 

Through community detection algorithms, it has discerned 

distinct clusters within the network, indicative of underlying 

structures where subsets of features exhibit tightly knit 

interactions, potentially alluding to functional modules 

within the engine's operational parameters. The community 

color-coding allows to observe the modular nature of feature 

interdependencies, which may correspond to different 

physical or operational aspects of engine performance. 

Additionally, the betweenness centrality analysis reveals key 

nodes such as 'TRA,' 'P24,' and 'P15' that act as critical 

conduits in the flow of information through the network, 

signifying their roles in the model's inference processes. 

Figure 5 FIN with betweenness centrality and community detection 
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In Figure 10, we illustrate an innovative Feature Interaction 

Network (FIN) that leverages SHAP values to illuminate the 

complex dynamics within our predictive model for 

Remaining Useful Life (RUL) of aerospace engines. This 

network diagram, empowered by a surrogate model, not only 

visualizes the relative influence of various engine features but 

also clarifies their interrelationships. Each node, scaled 

according to mean absolute SHAP values, reflects the 

magnitude of influence each feature holds over the RUL 

predictions, with larger nodes marking more influential 

features. 

These nodes are distinctly color-coded to represent different 

communities or clusters of features that share similar 

behavior patterns within the predictive framework, 

highlighting how groups of related features collectively 

impact engine performance. The edges between nodes, 

whose thickness is determined by the SHAP interaction 

values, illustrate the strength of the interactions between 

feature pairs, revealing critical dependencies and synergies. 

Key interactions such as those between 'NC' (corrective 

speed) and temperatures at critical engine locations ('T50' and 

'T48') suggest a profound connection between engine speed 

adjustments and thermal conditions. This relationship is 

crucial for maintaining optimal engine performance, 

particularly under varying operational stresses. The 

interaction between 'NC' and 'T50' highlights how 

adjustments in engine speed can be crucial in managing the 

engine's thermal output to avoid overheating while 

maintaining efficiency. 

Further, the interaction between 'T50' and 'Mach' (aircraft 

velocity relative to the speed of sound) underscores the 

significant impact of aerodynamic performance on engine 

thermal management. The relationship between engine 

thermal outputs and flight speed suggests that higher speeds 

may require adjustments in thermal management strategies to 

maintain engine integrity and performance. 

Additionally, the 'NC - Mach' interaction points to a dynamic 

balancing act required between engine speed and aircraft 

velocity, indicating that engine control systems need to be 

highly adaptive to changes in flight dynamics. This 

adaptiveness is crucial for optimizing fuel consumption and 

minimizing wear and tear under different flight conditions. 

Lastly, the interaction between 'T50' and 'P40' (pressure at the 

fan outlet) sheds light on how temperature and pressure 

management are interlinked, playing a pivotal role in 

ensuring the engine's thrust efficiency and overall stability. 

This insight is particularly valuable for developing more 

effective predictive maintenance strategies, aiming to reduce 

unexpected downtimes and extend the engine's useful life.

Figure 6 Feature Interaction Network (FIN) Visualizing Key Dependencies and Community Structures: This network map 

illustrates the Feature Interaction Network (FIN) with nodes sized according to their mean absolute SHAP values, which reflect 

the impact magnitude on the model's output. The nodes are color-coded by community, identifying clusters of tightly 

interconnected features that influence system behavior in distinct ways. Thicker lines between nodes indicate stronger SHAP 
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feature interactions, highlighting critical dependencies such as NC-T50 and T50-Mach, which are pivotal for understanding 

complex dynamics within the aerospace engine's operations 

5. CONCLUSION

 In conclusion, our research aims to advance the predictive 

maintenance field by developing a prognostic framework that 

combines cutting-edge machine learning techniques with 

innovative interpretative methodologies to predict the 

Remaining Useful Life (RUL) of aerospace engines. 

Utilizing a Surrogate Model, we have successfully mapped 

complex SHAP feature interactions into a well-defined 

Feature Interaction Network (FIN). This network, structured 

with nodes proportionally scaled by mean absolute SHAP 

values and connections defined by the strength of SHAP 

interactions, vividly represents the intricate relationships 

between operational parameters. 

Our detailed analysis highlighted crucial feature interactions, 

notably between corrective speed and critical engine 

temperature, which are point factors essential for optimizing 

engine efficiency and performance. Furthermore, the 

application of community detection in the FIN has 

significantly deepened our understanding of these features, 

grouping related variables to illuminate how they collectively 

impact RUL predictions. This clustering clarifies the 

predictive model's structure and enhances the interpretability 

of the data, providing clear pathways for intervention. 

The visual representation of the FIN is not merely an 

analytical tool; it acts as a vital conduit translating complex, 

data-driven insights into tangible, operational strategies. This 

visualization underscores the transformative potential of 

interpretative machine learning to convert abstract data into 

actionable intelligence, a resource of value in the high-stakes 

field of aerospace prognostics where the accuracy of 

predictions can directly influence operational safety and 

maintenance efficiency. 
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