References
Amaral, T. G., Pires, V. F., & Pires, A. J. (2021). Fault detection in pv tracking systems using an image processing algorithm based on pca. Energies, 14(21), 7278. Bansal, P., Zheng, Z., Shao, C., Li, J., Banu, M., Carlson, B. E., & Li, Y. (2022). Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints. Reliability Engineering & System Safety, 227, 108711.
Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2019).
Hybrid deep fault detection and isolation: Combining deep neural networks and system performance models. arXiv preprint arXiv:1908.01529.
Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2022).
Fusing physics-based and deep learning models for prognostics. Reliability Engineering & System Safety, 217, 107961.
Chen, Z., Chen, Y., Wu, L., Cheng, S., & Lin, P. (2019). Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energy Conversion and Management, 198, 111793.
Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., & Pavan, A. M. (2016). A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renewable Energy, 90, 501–512. Daliento, S., Chouder, A., Guerriero, P., Pavan, A. M., Mellit, A., Moeini, R., & Tricoli, P. (2017). Monitoring, diagnosis, and power forecasting for photovoltaic fields: A review. International Journal of Photoenergy, 2017. Frank, S., Heaney, M., Jin, X., Robertson, J., Cheung, H., Elmore, R., & Henze, G. (2016). Hybrid modelbased and data-driven fault detection and diagnostics for commercial buildings (Tech. Rep.). National Renewable Energy Lab.(NREL), Golden, CO (United States). Gao, W., & Wai, R.-J. (2020). A novel fault identification method for photovoltaic array via convolutional neural network and residual gated recurrent unit. IEEE access, 8, 159493–159510. Huber, L. G., Palm´e, T., & Chao, M. A. (2023). Physicsinformed machine learning for predictive maintenance: applied use-cases. In 2023 10th ieee swiss conference on data science (sds) (pp. 66–72). Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422440. Kohtz, S., Xu, Y., Zheng, Z., & Wang, P. (2022). Physics-informed machine learning model for battery state of health prognostics using partial charging segments. Mechanical Systems and Signal Processing, 172, 109002. Li, B., Delpha, C., Diallo, D., & Migan-Dubois, A. (2021). Application of artificial neural networks to photovoltaic fault detection and diagnosis: A review. Renewable and Sustainable Energy Reviews, 138, 110512. Li, W., Zhang, J., Ringbeck, F., J¨ost, D., Zhang, L., Wei, Z., & Sauer, D. U. (2021). Physics-informed neural networks for electrode-level state estimation in lithiumion batteries. Journal of Power Sources, 506, 230034. Mansouri, M., Trabelsi, M., Nounou, H., & Nounou, M. (2021). Deep learning based fault diagnosis of photo-
voltaic systems: A comprehensive review and enhancement prospects. IEEE Access. Mellit, A., Tina, G. M., & Kalogirou, S. A. (2018). Fault detection and diagnosis methods for photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 91, 1–17. Pillai, D. S., & Rajasekar, N. (2018). A comprehensive review on protection challenges and fault diagnosis in pv systems. Renewable and Sustainable Energy Reviews, 91, 18–40. Racharla, S., & Rajan, K. (2017). Solar tracking system–a review. International journal of sustainable engineering, 10(2), 72–81. Rai, A., & Mitra, M. (2021). A hybrid physics-assisted machine-learning-based damage detection using lamb wave. S¯adhan¯a, 46(2), 64. Rausch, R. T., Goebel, K. F., Eklund, N. H., & Brunell,
B. J. (2005). Integrated In-Flight Fault Detection and Accommodation: A Model-Based Study. In Volume 1: Turbo expo 2005 (pp. 561–569). ASME. doi:
10.1115/GT2005-68300
Triki-Lahiani, A., Abdelghani, A. B.-B., & Slama-Belkhodja,
I. (2018). Fault detection and monitoring systems for photovoltaic installations: A review. Renewable and Sustainable Energy Reviews, 82, 2680–2692. Wu, Y., Sicard, B., & Gadsden, S. A. (2024). A review of physics-informed machine learning methods with applications to condition monitoring and anomaly detection. arXiv preprint arXiv:2401.11860. Zgraggen, J., Guo, Y., Notaristefano, A., & Goren Huber,
L. (2022). Physics informed deep learning for tracker fault detection in photovoltaic power plants. In 14th annual conference of the prognostics and health management society, nashville, usa, 1-4 november 2022 (Vol. 14). Zgraggen, J., Guo, Y., Notaristefano, A., & Goren Huber,
L. (2023). Fully unsupervised fault detection in solar power plants using physics-informed deep learning. In 33rd european safety and reliability conference (esrel), southampton, united kingdom, 3-7 september 2023 (pp. 1737–1745).