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ABSTRACT

Combining physical and domain knowledge in artificial in-
telligence (AI) models has been gaining attention in various
fields and applications. Applications in machine prognos-
tics and health management (PHM) are natural candidates
for such hybrid approaches. In particular, they can be effi-
ciently exploited for high fidelity anomaly detection in tech-
nical and industrial systems. A natural way for hybridization
is using physical models to generate representative data for
the training of AI models. Depending on the level of do-
main knowledge availability, data augmentation can compen-
sate for scarcity of real data from the field. This is particularly
attractive for anomaly detection tasks, in which data from the
abnormal regimes is limited by definition. On top of this in-
herent data limitation, many real-world systems suffer from
data limitations even within the normal regimes.

In this paper we propose a physics-informed deep learning
algorithm for fault detection in grid scale photovoltaic power
plants. We focus on a common data scarce scenario that
emerges from a low asset monitoring granularity: instead of
monitoring the power production of each solar string, the
power output is monitored only at combiner-box or even in-
verter level (monitoring a large number of strings with a sin-
gle sensor). As a result, the signatures of single local faults
can become very subtle and challenging to detect. We show
that in this case a physics-informed AI approach significantly
outperforms the alternative of a purely data-driven anomaly
detection model. This enables high fidelity fault detection in
larger solar power plants, that are often limited in the granu-
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larity of their condition monitoring data.

1. INTRODUCTION

Utilizing physical information and domain knowledge in con-
junction with AI models has become a popular approach to
deal with some of the known limitations of AI (Karniadakis
et al., 2021), such as the lack of interpretability of AI models
and their data-hungry nature. The field of equipment prog-
nostics and health management (PHM) is an ideal application
field for such hybrid approaches (Rausch, Goebel, Eklund, &
Brunell, 2005; Wu, Sicard, & Gadsden, 2024). For many of
the systems, a detailed physical model is already in use for de-
sign purposes (Chao, Kulkarni, Goebel, & Fink, 2019; Huber,
Palmé, & Chao, 2023), and can be exploited also for PHM.
In other systems the fault or degradation mechanisms are well
understood and allow for a microscopic or a phenomenologi-
cal model (Rai & Mitra, 2021; Zgraggen, Guo, Notaristefano,
& Goren Huber, 2023).

A typical challenge in PHM tasks is the severe lack of histori-
cal failure data. In these cases, the use of physical information
to compensate for data scarcity becomes even more attractive
than in other application domains. One particularly common
approach is to augment the training data using physical mod-
els (Frank et al., 2016; Wu et al., 2024). Such models can
be used either for operational regimes that are scarce on data
(Chao, Kulkarni, Goebel, & Fink, 2022; W. Li et al., 2021),
or to directly model fault mechanisms that are rarely seen in
operation (Kohtz, Xu, Zheng, & Wang, 2022; Bansal et al.,
2022).

In our previous work we took the latter approach (Zgraggen,
Guo, Notaristefano, & Goren Huber, 2022). We developed
a physical model that corrupts data from a normally operat-
ing photovoltaic (PV) plant, thereby generating data with syn-
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Figure 1. The challenge of low data granularity for tracker fault detection. The eight strings that are mounted on the faulty
tracker 2 contribute their power to two different combiner boxes (CBs): CB1 is affected by only one of these strings. Its power
profile (bottom left, solid blue) suffers a mild loss compared to the daily reference (dashed black). CB2 is affected by seven of
the faulty strings, and suffers a more significant power loss (bottom right).

thetic faults. In this paper we extend this method to allow its
applicability under data scarcity in real-world scenarios. The
proposed hybrid approach profits from both worlds: on one
hand it demonstrates a high ability to mimic the effects of rare
faults, without the need for real faults in the data. On the other
hand, it does not require a complex physical model of the nor-
mal system, as all complex (environmental and operational)
effects are already captured by the field data. As opposed to
previous approaches to solar plant fault detection, our method
is independent of lab data (Chen, Chen, Wu, Cheng, & Lin,
2019; B. Li, Delpha, Diallo, & Migan-Dubois, 2021; Gao &
Wai, 2020), simulation data (Chine et al., 2016), or desig-
nated data-collecting hardware (Daliento et al., 2017; Ama-
ral, Pires, & Pires, 2021), and was carried out using existing
operational data only. Our Physics-Informed Deep Learning
(PIDL) approach was shown to perform very accurately with
no need for fault data (Zgraggen et al., 2022), and even in a
fully unsupervised setting, where the data may be contami-
nated by unlabeled anomalies (Zgraggen et al., 2023). More-
over, the approach does not require any irradiance measure-
ments, but merely the standard 15-minute measurements of
the power output from individual PV strings. Also in this re-
spect our work is rather unique: most of the published work
related to PV plant fault detection (Mellit, Tina, & Kalogirou,
2018; Triki-Lahiani, Abdelghani, & Slama-Belkhodja, 2018;
Pillai & Rajasekar, 2018; Mansouri, Trabelsi, Nounou, &
Nounou, 2021) relies on data at single module or cell resolu-
tion, rather than the operationally relevant string-data, often
containing dozens or hundreds of modules.

In grid-scale solar power plants, it is often impractical to mon-

itor data at string level due to the large number of PV strings
involved. As a result, individually monitoring each string
often becomes unfeasible. In this case, the output power is
monitored and recorded only at a higher spatial granularity
level, for example at the level of combiner boxes or even in-
verters, gathering a large number of strings in a single sensor
reading. As shown below, this lower monitoring granularity
inevitably leads to a reduced effectiveness in detecting local
faults. To the best of our knowledge, there are no previously
published studies that address fault detection at combiner-box
or inverter level in PV power plants.

In this paper we address the above common scenario of low
data granularity by extending our previous PIDL approach.
We use a physical model to transfer the method from assets
with a high data granularity to assets with a low data gran-
ularity. We show that in the case of data scarce assets, the
physics-informed (PI) approach is of an even higher benefit
compared to purely data-driven anomaly detection.

The contribution of this paper is two-fold. For solar power
plant condition monitoring, it offers a high fidelity method to
detect anomalous power losses by combining physical knowl-
edge and AI in real-world operational conditions. In a more
general context, the paper demonstrates the effectiveness of
physics-informed AI for fault detection in data-scarce sce-
narios, which are common in various application fields. In
particular, we show that physical knowledge can be utilized
for transfer learning between domains with abundant data and
domains with scarce data.

In Section 2 we describe the solar tracker use-case on which
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Figure 2. The effect of low data granularity on the measured
output power. The signature of a real tracker fault on the
daily output power of a single string (upper panels) and of the
entire combiner box (CB, lower panels). A clear-sky day (left
panels) is contrasted with a cloudy day (right panels). The
fault signatures are considerably smaller and harder to detect,
if only CB-level power data is available.

we demonstrate our approach. In Section 3 we provide the
details of the PIDL approach. Finally, the results are shown
and discussed in Section 4.

2. DESCRIPTION OF THE USE CASE

The proposed PIDL approach is demonstrated here for the
early detection of faults in the tracking system of solar power
plants. Solar trackers are rotating units on which PV panels
are mounted in order to adjust their orientation during the day
according to the position of the sun, thus ensuring maximal
power production at any given moment (Racharla & Rajan,
2017). In a common fault mechanism of solar trackers, the
trackers get stuck at a certain orientation instead of follow-
ing the sun. This fault has an immediate implication on the
power production, which is significantly reduced compared
to the optimum, given certain irradiance and weather con-
ditions. Thus, an automatic early detection of the fault by
closely monitoring the power production patterns can signifi-
cantly reduce the resulting energy losses.

In our previous work (Zgraggen et al., 2022) we developed
an algorithm for early detection of tracker faults based on
power profiles of PV strings. The algorithm is thus applicable
to power plants in which the power production is monitored

for each PV string individually. However, a large fraction of
the operational PV power plants nowadays are monitored at a
lower granularity, that is, at the level of combiner boxes (CB)
or even inverters. In such cases, historical power data is only
available for single CBs or inverters, summing up the power
of up to tens of individual strings. The single string power is
no longer available, thus the previously proposed fault detec-
tion algorithm is not directly applicable.

To understand the fault detection challenge posed by the lower
data granularity, an example is illustrated in Figure 1, show-
ing two CBs with their related trackers. Since a CB extends
over a large area, its strings are typically mounted on sev-
eral different solar trackers, in this case trackers 1,2 and 3.
Thus, if one tracker is faulty, only a fraction of the CB power
originates from a string that is affected by the fault while the
rest of the strings of this CB do not display any signatures
of the tracker fault. In the illustration of Figure 1, Tracker
2 is faulty, while Trackers 1 and 3 are normally functioning.
Combiner box CB1 receives its input from 7 strings which
are unaffected by the tracker fault (as they are mounted on
Tracker 1) and one string which is affected by the fault (as it
is mounted on Tracker 2). As a results, the CB power profile
(shown at the bottom left in blue) is only mildly impacted by
the fault, compared to the reference profile (dashed black).
On the other hand, CB2 receives its input from 7 affected
strings (mounted on Tracker 2) and only one unaffected string
(on Tracker 3). The resulting CB2 power profile (bottom right
in blue) shows a much stronger fault signature than the one of
CB1. Note that the black dashed profiles are the daily refer-
ence power production, calculated from the entire plant data
(see explanation in Sec. 3). Moreover, it should be noted
that the example is illustrated for a sunny day with clear sky,
whereas the effectiveness of the proposed method is shown
below under any weather and operational conditions.

As argued above, typical fault signatures on CB power pro-
files are much more subtle than on string power profiles, and
require a higher anomaly detection sensitivity to identify and
locate them. Figure 2 demonstrate this effect using data from
a real operational PV plant, under different weather condi-
tions. The signatures of a tracker fault on the measured out-
put power are shown at the two monitoring levels: string level
vs. CB level. In the upper panels we display (normalized)
daily power profiles of a single string which was mounted
on a faulty tracker, compared to the daily reference (dashed
black). In the lower panels we assume that string level data
is unavailable and display the power profiles of the entire CB
containing the same string of the upper panels. Since this CB
sums up the power of both faulty and intact strings, the signa-
ture of the tracker fault is smaller and harder to detect. This is
particularly true under cloudy weather conditions, as shown
at the right column.

The focus of this paper is the transfer of the tracker fault
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Figure 3. The proposed Physics-Informed AI fault detection
algorithm.

detection algorithm from string level monitoring data to CB
level monitoring data, thereby addressing the high fault de-
tection sensitivity challenge.

3. METHOD

In order to achieve high fidelity fault detection of tracker faults
for CB-level monitoring data we introduce an extension of
our previous string-level PIDL model. The proposed PIDL al-
gorithm for tracker fault detection includes two steps: (i) Data
augmentation using a physical model that synthetically gener-
ates abnormal power profiles. (ii) Training a binary classifier
to distinguish normal from abnormal daily power profiles.

3.1. Physics Informed Data Augmentation

Due to the rare occurrence of tracker faults, real operational
power data which is affected by these faults is very scarce.
However, data from normal functioning solar power systems
is abundant. We exploit this fact, and use operational power
data from normally functioning solar plants in order to gen-
erate synthetic power profiles under tracker faults. Since the
tracker fault mechanism is well understood, we develop phys-
ical equations that enable a simple transformation of a healthy
power profile into a faulty one. In this way we can simulate
diverse fault scenarios and augment the training data with a
large number of realistic tracker fault examples. In a sec-
ond step, the augmented data containing both healthy and
faulty power profiles is used to train a binary classifier that
distinguishes between normal and abnormal power profiles,
thereby enabling identification and localization of tracker faults
in large power plants. In the following we describe the physics
informed data augmentation method.

A tracker fault affects the power production of the solar strings
that are mounted on the faulty tracker. Neighboring strings, if
mounted on healthy functioning trackers, remain unaffected.
In particular, a common situation (as illustrated in Figure 1) is
that out of the N strings that are combined into one CB, only
d < N are mounted on a faulty tracker and the rest N − d
strings are mounted on healthy trackers.

In order to synthetically generate CB power profiles that cor-
respond to various types of tracker faults, we model d faulty
string power profiles that result from a tracker getting stuck
at an angle θ0. This is done using a physical model fphys of
the fault mechanism that ”corrupts” normal power profiles of
single strings, turning them into faulty profiles. The d syn-
thetically generated faulty profiles are added to N − d real
healthy string profiles from the operational system, to obtain
a synthetic CB profile which is partially affected by a tracker
fault, as depicted in Figure 3.

The generation of a faulty string power profile x(c)(t) out of
a healthy string profile x(0)(t) is done using the equations

x(c)(t) = cp [(1− γ)g(θ0, θ∗i (t)) + γ]x(0)(t)

g(θ0, θ
∗
i (t)) =

cos θ0 · fIAM(θ0)

cos θ∗i (t) · fIAM(θ∗i (t))
.

(1)

with fIAM(θi) = 1 − b0(1/ cos θi − 1) and where θ∗i (t) is
the optimal tilt angle of the tracker at time t, θ0 is the stuck
angle of the faulty tracker, b0 and γ are model parameters
estimated empirically using the data, by fitting 10 samples of
faulty profiles from the operational data of the string-level PV
plant (we note that such profiles are only needed for a single
plant, and are not required for the target plant at CB level).
The parameter cp is a degradation loss coefficient, assumed
to range between 0.8 and 1 in order to simulate slight losses
which are unrelated to tracker faults, and may exist also in
healthy strings. For details of the physical model we refer the
reader to (Zgraggen et al., 2022).

By adding up d faulty and N − d normal string profiles, a
synthetically generated faulty CB power profile u(c)(t) ob-
tains the form

u(c)(t) =
1

d

d∑

i=1

x
(c)
i (θ0, γ, b0, cp; t) +

1

N − d
N∑

i=d+1

x
(0)
i (t)

(2)
where x(c)i (θ0, γ, b0, cp; t) is the ith corrupted string profile
and x(0)i (t) is the ith healthy string profile. The model pa-
rameters θ0, γ, b0 and cp are sampled from uniform distribu-
tions within realistic ranges to represent all physically viable
configurations (see (Zgraggen et al., 2022) for details), but
are kept identical for all of the strings that belong to the same
CB. The number of corrupted strings d is drawn randomly
from the range 1...N in order to cover all possible configura-
tions under the constraint of N strings in one CB (which is
given by the plant configuration).

In addition to the generation of faulty CB profiles, we gener-
ate an equal amount of healthy CB profiles by simply adding
N healthy adjacent string profiles. Note that we follow the
modelling approach described in (Zgraggen et al., 2022), in
which we randomly introduce mild physics-informed mod-
ifications to the healthy profiles in order to mimic the ef-
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fects of small power losses that are unrelated to tracker faults.
As shown in (Zgraggen et al., 2022), allowing this physics-
inspired stochastic variability in the training data, increases
both the accuracy and the robustness of the model predictions.

The proposed data augmentation process ensures a large di-
versity of tracker faults with different intensities, stuck angles
and under various soiling or degradation conditions. More-
over, an important advantage of our approach is its mathe-
matical structure, that enables using real operational power
profiles and transforming them into faulty profiles by mathe-
matically ”injecting” a known fault mechanism into them. As
a result, complex features of the model inputs, such as diverse
weather effects, are already accounted for, and do not need to
be modeled.

We note that the CB-level model described above uses string
power profiles to generate CB power profiles. As such, it as-
sumes the availability of normal data from one power plant
which is monitored at string level. The results we show be-
low were obtained after training on data from a string-level
plant (the source plant), but tested on an operational power
plant with CB monitoring only, in a different geographic lo-
cation (the target plant). With this we demonstrate that effec-
tive fault detection is transferable to the target plant without
string-level data availability, owing to the physics informed
modeling approach.

3.2. CNN fault classifier

The empirical-physical model of the fault mechanism is used
to augment the normal data set, such that it now contains
healthy as well as faulty power profiles at CB level, u(0)j (t)

and u(c)j (t) respectively. Each daily profile is a time-series
of size 96 (due to a 15 minute resolution of the original sen-
sor data). At a next step, the augmented data set, contain-
ing balanced healthy and faulty samples is pre-processed by
subtracting from each power profile the daily reference pro-
file, calculated as the 0.9 quantile over the entire plant at any
given moment in time (see (Zgraggen et al., 2022) for details).
The resulting power deviation profiles are used to train a 1d-
CNN classifier fcl that assigns an anomaly score s(AD)

j to
each daily profile, as depicted in Figure 3. This allows to de-
tect faulty combiner boxes (thereby locating the related faulty
trackers) at the end of each day, which is the relevant time res-
olution for decision making in practice. The CNN contains
three one-dimensional convolutional layers followed by two
fully-connected layers, with a total of around 30’000 trainable
parameters. The network architecture was optimized using a
grid search to tune the number of layers and filters and the
learning rate.

We trained the classifier with 700’000 CB power profiles, half
of which include synthetic tracker fault effects. All profiles
originate from one single PV power plant during a time pe-
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Figure 4. Fault detection evaluation using precision-recall
curves. The performance of the proposed CB-level PIDL
model (solid blue) is compared with a simpler string-level
PIDL (dashed red) and a purely data-driven convolutional AE
model (dotted black).

riod of one year. The test data originates from another PV
power plant, monitored at CB level, and includes 5349 CB
power profiles collected during a time period of two months
and containing 857 known faulty profiles, labeled manually
by domain experts.

Baselines. We compare the performance of the proposed al-
gorithm with two baseline methods. The first one is a similar
PIDL algorithm which is trained using the original string level
profiles, rather than CB-level profiles, with and without syn-
thetic faults. This enables us to examine the transferability of
the learned features from string to CB level.

The second baseline we compare to is a purely data-driven
approach, not making use of any physics-based modeling. In
this case we train a convolutional Autoencoder (AE) neural
network to reconstruct power profiles. The AE is trained with
the normal part of the data only, not including any tracker
faults. The normalized reconstruction errors are then used as
fault indicators, with a threshold typically set at the tail of
the training distribution of reconstruction errors. The feature
extraction layers of the AE are four 1d-convolutional layers,
similarly to the PIDL network described above, with a similar
number of 46’000 trainable parameters.

4. RESULTS

The performance of the proposed PIDL classifier is evaluated
in Figure 4 using a precision-recall curve (PRC). The PRC
of the CB-level PIDL method is shown in solid blue, and is
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Figure 5. Fault detection evaluation using confusion matri-
ces. The performance of the proposed CB-level PIDL model
(right) is compared to the ones of a string-level PIDL (mid-
dle) and a purely data-driven AE (left). For all 3 models, the
detection thresholds were set to yield a false positive rate of
1%.

contrasted with the PRC of the string-level PIDL approach
(dashed red), and the PRC of the pure data-driven AE model
(dotted black). It is evident that a pure data-driven approach
does not exploit the physical knowledge of the fault mecha-
nism and thus reaches a much poorer performance than both
of the PI approaches. In the case of string-level PIDL, the in-
puts are not aggregated to mimic CB power profiles whereas
in the case of CB-level PIDL the string power profiles are ag-
gregated in various ways such that different tracker fault con-
figurations are simulated in the synthetic data. In this way,
also configurations that lead to subtle fault signatures are in-
troduced at training, and can be detected at inference time.
As seen from the PRC results, this leads to a significant im-
provement in the fault detection performance, with an aver-
age precision (AP) of 0.95 for the proposed CB-level PIDL,
compared to 0.79 for the string-level PIDL. As expected, the
purely data-driven AE model is significantly inferior in its
fault detection performance, with an AP of 0.38. It should
also be noted that the performance of the CB-level PIDL is
only slightly worse than the one we reported for the string-
level PIDL when tested on string-level data (with an AP of
0.97, see (Zgraggen et al., 2022)).

In addition to the PRC, we compare the fault detection per-
formance using confusion matrices shown in Figure 5. The
confusion matrix of the CB-level PIDL model (right) is com-
pared with the ones of the string-level PIDL (middle) and the
data-driven AE (left). For the sake of model comparison, all
three confusion matrices were generated by selecting a detec-
tion threshold that guarantees a low false positive rate of 1%.
This is a practically sensible threshold, that reduces the false
alarms to a minimum. Fixing the threshold to produce this
false positive rate on the test data in all three methods, we ob-
tain a false negative (missed detections) rate of 0.8 with the
pure data-driven approach, a rate of 0.45 with the string-level
PIDL and a significantly lower rate of 0.19 with the proposed
CB-level PIDL algorithm.

The complexity of the fault detection task is demonstrated in
Figure 6 using CB power test data from the target power plant.
Each panel displays a CB daily power profile (solid blue)
compared with the daily reference (dashed black). The upper
six panels are examples of CB power profiles with no tracker
faults, whereas the six lower panels were labeled as suffering
from power losses due to tracker faults. The power profiles
in the 6 panels at the left half of the figure were all correctly
classified by the proposed PIDL algorithm, as well as by the
purely data-driven convolutional AE. Indeed, the fault signa-
tures of the three profiles at the bottom left are rather strong
and could be clearly assigned to tracker faults by both models.
This stands in contrast to the 6 panels on the right hand side
of the figure, which were all correctly classified by the PIDL
model, but misclassified by the AE. Here, physical informa-
tion about the tracker fault mechanism clearly helped to dis-
tinguish between true tracker faults (lower panels) and power
losses due to other reasons, unrelated to the solar trackers (up-
per panels). This is despite the fact that such unrelated power
losses may be rather high, as seen in the three upper right
panels. In all three cases, due to their high power losses com-
pared to the reference, the AE produced high reconstruction
errors, leading to false positives. On the other hand, the low
power losses of the truly faulty profiles at the bottom right led
to missed detections (false negatives) by the AE, because of
reconstruction errors that are similar in magnitude to the ones
of the training data. Despite their low power losses, and their
mild fault signatures, these power profiles were correctly de-
tected as suffering from tracker faults by the CB-level PIDL
algorithm.

To conclude, the CB-level PIDL includes a physics-informed
data augmentation step that captures important nuances in the
fault features, even in case of low data availability that leads
to very mild fault signatures. The same data augmentation
framework can be easily generalized to any monitoring level,
provided the structure of the monitoring data at the opera-
tional plant (i.e number of strings per combiner-box or in-
verter). The only prerequisite is the availability of string level
power profiles from a normal functioning power plant that
can serve as the baseline for data augmentation. Moreover,
one of the advantages of our approach is that it does not re-
quire complex measurement and/or modeling of the solar ir-
radiance under various ambient conditions, but relies entirely
on a single measured variable: the output power.

The proposed approach of physics-informed data augmen-
tation is generally applicable in systems with some under-
standing of the fault mechanism. However, we believe that
this physical understanding does not need to be complete or
to amount to a full microscopic model of the fault mecha-
nism. In many cases, a phenomenological model of the fault
signatures on the observed data may be sufficient in order
to achieve superior fault detection performance compared to
purely data-driven approaches.
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Figure 6. Classification outcomes of the PIDL compared with a purely data-driven AE model. Each panel displays a CB power
profile (solid blue) together with the daily reference profile (dashed black). True labeled profiles with tracker faults (bottom
row) are contrasted with profiles with no tracker faults (top row). The 6 panels on the left half were correctly classified by
both the PIDL and the AE models, whereas the 6 panels on the right were classified correctly only by the proposed PIDL and
misclassified by the AE model.

5. CONCLUSIONS

Scarcity of condition monitoring data is a common challenge
for practical deployment of fault detection algorithms. Data
scarcity may be due to missing data, due to a low time resolu-
tion of the data or due to a low spatial resolution. The latter is
a common situation in large scale PV power plants, in which
condition monitoring data is often available at a low spatial
granularity level, e.g. aggregating the monitored power pro-
duction over a large number of individual assets. However, a
similar situation applies to other large infrastructures, where
the data volume is often reduced using a more coarse-grained
aggregation when monitoring the assets.

In order to enable high fidelity fault detection despite the data
scarcity challenge, we introduced a physics-informed artifi-
cial intelligence algorithm. With this approach, physical in-
formation is exploited in order to transfer the data augmen-
tation from a domain with abundant data to a domain with
scarce data. We demonstrated the high performance of the
algorithm on operational data from a PV power plant with a
low data granularity, and showed its clear superiority over a
purely data-driven approach. Moreover, we showed that its
performance is similar to our previous results achieved on a
high data granularity power plant. Future research directions
include an extension of the approach to additional fault and
power loss mechanisms, aiming at effective diagnostics of the
power loss root cause.

ACKNOWLEDGMENT

This research was funded by Innosuisse - Swiss Innovation
Agency under grant No. 55018.1 IP-ICT.

REFERENCES

Amaral, T. G., Pires, V. F., & Pires, A. J. (2021). Fault detec-
tion in pv tracking systems using an image processing
algorithm based on pca. Energies, 14(21), 7278.

Bansal, P., Zheng, Z., Shao, C., Li, J., Banu, M., Carlson,
B. E., & Li, Y. (2022). Physics-informed machine
learning assisted uncertainty quantification for the cor-
rosion of dissimilar material joints. Reliability Engi-
neering & System Safety, 227, 108711.

Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2019).
Hybrid deep fault detection and isolation: Combining
deep neural networks and system performance models.
arXiv preprint arXiv:1908.01529.

Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2022).
Fusing physics-based and deep learning models for
prognostics. Reliability Engineering & System Safety,
217, 107961.

Chen, Z., Chen, Y., Wu, L., Cheng, S., & Lin, P. (2019). Deep
residual network based fault detection and diagnosis
of photovoltaic arrays using current-voltage curves and
ambient conditions. Energy Conversion and Manage-
ment, 198, 111793.

7

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 292



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., &
Pavan, A. M. (2016). A novel fault diagnosis technique
for photovoltaic systems based on artificial neural net-
works. Renewable Energy, 90, 501–512.

Daliento, S., Chouder, A., Guerriero, P., Pavan, A. M., Mellit,
A., Moeini, R., & Tricoli, P. (2017). Monitoring, diag-
nosis, and power forecasting for photovoltaic fields: A
review. International Journal of Photoenergy, 2017.

Frank, S., Heaney, M., Jin, X., Robertson, J., Cheung, H.,
Elmore, R., & Henze, G. (2016). Hybrid model-
based and data-driven fault detection and diagnos-
tics for commercial buildings (Tech. Rep.). National
Renewable Energy Lab.(NREL), Golden, CO (United
States).

Gao, W., & Wai, R.-J. (2020). A novel fault identification
method for photovoltaic array via convolutional neural
network and residual gated recurrent unit. IEEE access,
8, 159493–159510.
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