Model-based Probabilistic Diagnosis in Large Cyberphysical Systems

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 27, 2024
Peter J.F. Lucas
Giso Dal Arjen Hommersom
Guus Grievink

Abstract

Model-based diagnosis is concerned with diagnosing faults or malfunction of real-world physical or cyberphysical systems using a model of the structure and behavior of the systems. As cyberphysical systems can be extremely large and complex, and the associated computational models will be then equally large and complex, they impose a hard to beat challenge on the computational feasibility of reasoning with such models. When such a model is able to handle the uncertainty associated with diagnostics, giving rise to probabilistic model-based diagnostics, the computational feasibility becomes even harder. This paper: (1) proposes a novel graphical method underlying model-based diagnostics; (2) demonstrates experimentally how a novel, by the authors developed architecture of partitioned positive weighted model counting, is able to handle exact inference to answer a variety of probabilistic queries regarding the health status of a cyberphysical system. Results obtained are well within acceptable time bounds.

How to Cite

Lucas, P. J., Dal, G., Hommersom, . A., & Grievink, G. (2024). Model-based Probabilistic Diagnosis in Large Cyberphysical Systems. PHM Society European Conference, 8(1), 12. https://doi.org/10.36001/phme.2024.v8i1.4033
Abstract 46 | PDF Downloads 41

##plugins.themes.bootstrap3.article.details##

Keywords

Bayesian model-based diagnosis, Bayesian networks, Weighted model counting, Probabilistic inference

References
Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. Transactions on Computers, 100, 677-691.

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting. Artificial Intelligence, 172, 772-799.

Dal, G. H., Laarman, A., & Lucas, P. J. F. (2023). ParaGnosis: A tool for parallel knowledge compilation. In Model checking software: 29th international symposium, SPIN 2023, paris, france, april 26-27, 2023, proceedings (pp. 22-37).

Dal, G. H., Laarman, A. W., Hommersom, A., & Lucas, P. J. F. (2021). A compositional approach to probabilistic knowledge compilation. International Journal of Approximate Reasoning, 138, 38-66.

Dal, G. H., & Lucas, P. J. F. (2017). Weighted positive binary decision diagrams for exact probabilistic inference. International Journal of Approximate Reasoning, 90, 411-432.

Dal, G. H., Michels, S., & Lucas, P. J. F. (2017). Reducing the cost of probabilistic knowledge compilation. In Proceedings of Machine Learning Research (Vol. 73, pp. 141-152).

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial Intelligence Research, 17, 229-264.

Darwiche, A., & Marquis, P. (2021). On quantifying literals in Boolean logic and its applications to explainable AI. Journal of Artificial Intelligence Research, 72, 285-328.

de Kleer, J. (1991). Focusing on probable diagnoses. In Proc. of AAAI-1991 (pp. 842-848).

de Kleer, J., Mackworth, A. K., & Reiter, R. (1992). Characterizing diagnoses and systems. Artificial Intelligence, 56(2-3), 197-222. doi: 10.1016/0004-3702(92)90027-u

de Kleer, J., & Williams, B. C. (1987). Diagnosing multiple faults. Artificial Intelligence, 32(1), 97-130. doi:10.1016/0004-3702(87)90063-4

Dowdeswell, B., Sinha, R., & MacDonell, S. G. (2020). Finding faults: A scoping study of fault diagnostics for Industrial Cyber-Physical Systems. Journal of Systems and Software, 168, 110638. doi:10.1016/j.jss.2020.110638

Dudek, J. M., Phan, V., & Vardi, M. Y. (2020). ADDMC: Weighted model counting with algebraic decision diagrams. In International Conference on Artificial Intelligence (pp. 1468-1476).

Genesereth, M., & Nilsson, N. (1987). Logical foundations of Artificial Intelligence. Morgan Kaufmann.

Grievink, G. (2022). Model-based probabilistic diagnostics of cyber-physical systems. Bachelor Thesis, University of Twente, The Netherlands.

Jensen, K., & Andreassen, S. (2008). Generic causal probabilistic networks: A solution to a problem of transferability in medical decision support. Computer Methods and Programs in Biomedicine, 89(2), 189-201. doi:10.1016/j.cmpb.2007.10.015

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press.

Lee, E. A. (2008). Cyber physical systems: Design challenges. In 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC) (pp. 363-369). doi:10.1109/ISORC.2008.25

Lucas, P. J. F. (1996). Structures in Diagnosis: from theoryto clinical application (Published PhD Thesis). Free University (VU) of Amsterdam, The Netherlands.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan kaufmann.

R Core Team. (2024). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R-project.org

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32(1), 57-95. doi:10.1016/0004-3702(87)90062-2

Ruijters, E., & Stoelinga, M. (2015). Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer Science Review, 15-16, 29-62. doi:10.1016/j.cosrev.2015.03.001

Scutari, M. (2024). bnlearn - an R package for Bayesian network learning and inference [Computer software manual]. Retrieved from https://bnlearn.com

Srinivas, S. (1994). A probabilistic approach to hierarchical model-based diagnosis. In Uncertainty in Artifical Intelligence (pp. 538-545). Elsevier.
Section
Technical Papers