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ABSTRACT

Model-based diagnosis is concerned with diagnosing faults
or malfunction of real-world physical or cyberphysical sys-
tems using a model of the structure and behavior of the sys-
tems. As cyberphysical systems can be extremely large and
complex, and the associated computational models will be
then equally large and complex, they impose a hard to beat
challenge on the computational feasibility of reasoning with
such models. When such a model is able to handle the uncer-
tainty associated with diagnostics, giving rise to probabilis-
tic model-based diagnostics, the computational feasibility be-
comes even harder. This paper: (1) proposes a novel graphi-
cal method underlying model-based diagnostics; (2) demon-
strates experimentally how a novel, by the authors developed
architecture of partitioned positive weighted model counting,
is able to handle exact inference to answer a variety of prob-
abilistic queries regarding the health status of a cyberphysi-
cal system. Results obtained are well within acceptable time
bounds.

1. INTRODUCTION

Cyberphysical systems combine and integrate physical and
computational processes often with a special role for sensor
information (Lee, 2008). Nowadays, because of the explo-
sive rise in the role of embedded software in physical sys-
tems, there are many of such systems, for example industrial
printing or vending machines. In particular in a commercial
setting, such machines are desired to experience the least pos-
sible downtime, as being out of order usually has undesirable,
often financial, consequences for the users. Thus there is a
need to find the causes of malfunction as quickly as possible,
a process usually referred to a diagnosis, a terms taken from
the field of medicine (Lucas, 1996); the terms troubleshoot-
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ing and fault-finding are also often used in engineering. In the
case of cyberphysical systems faults or defects concern physi-
cal or software components, or possibly their interaction. The
purpose of the diagnostic process consists of automated fault
finding followed by repair or assisting technicians in a repair
job on site (Grievink, 2022).

Automated computer-based diagnosis in engineering has a
long-standing tradition, where in particular fault tree analysis
is a commonly used technique (Ruijters & Stoelinga, 2015).
However, other automated fault detection and analysis meth-
ods have also been developed (Dowdeswell, Sinha, & Mac-
Donell, 2020). In the present paper we depart from a frame-
work developed in the 1980s by Johan de Kleer, and which
is known as model-based diagnosis, MBD for short (de Kleer
& Williams, 1987). The adjective ‘model-based’ comes from
the principle that with the design of a machine one possesses
already valuable knowledge about its structure or architecture
and its functional components and their interactions before
the machine is actually produced, purchased, and employed
in practice. This knowledge can be put to use in a diagnostic
setting.

De Kleer’s method of model-based diagnosis is based on com-
paring qualitative predictions of behavior of a model of a
given machine with actual observations, which explains why
it is also called consistency-based diagnosis (CBD) (Reiter,
1987). CBD is traditionally seen as a kind of symbolic or
logical assumption-based reasoning (Genesereth & Nilsson,
1987). However, even in the early days of MBD it was re-
alized that probabilistic information could play a role in im-
proving the accuracy of diagnostic solutions (de Kleer, 1991).
It was subsequently proved by Judea Pearl that MBD can
be mapped to the multivariate probabilistic representation of
Bayesian networks (Pearl, 1988). The advantage of Bayesian
networks as a formalism of model-based diagnosis is that in
principle uncertain, probabilistic knowledge about the occur-
rence of faults can be integrated and also learned from data.
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However, a well-known problem of MBD, and probabilistic
MBD is no exception, is that models can be very large and
thus inference is often infeasible. There can be little doubt
that with the large and complex cyberphysical systems devel-
oped today, and even more so in the future, building and per-
forming inference with such models will hit computational
obstacles. During the last few years we have been working
on moving the boundaries of probabilistic inference by de-
veloping a novel framework referred to as partitioned posi-
tive weighted model counting (that can also be parallelized),
inspired by the success of model counting in software verifi-
cation (Dal & Lucas, 2017; Dal, Laarman, Hommersom, &
Lucas, 2021). This framework was shown in various papers
to be superior to other probabilistic methods (Dal et al., 2021;
Dal, Laarman, & Lucas, 2023). This made us wonder whether
it might be a good candidate for model-based diagnosis of
large cyberphysical systems. Positive weighted model count-
ing exploits symmetries in probability tables, which typically
also occur in models used in MBD.

The main contributions of this paper are as follows:

• A new representation of compositional Bayesian networks
that supports developing large probabilistic model-based
systems from specifications of system components;

• A novel method of probabilistic model-based diagnosis,
we call it Bayesian model-based diagnosis, that properly
takes into account the dependences between components
in MBD, different from an earlier developed and limited
method (Grievink, 2022);

• Experimental evidence that our publicly available soft-
ware tool PARAGNOSIS 1 (Dal et al., 2023), implement-
ing partitioned weighted model counting, supports solv-
ing diagnostic problems of systems with different size
and complexity, including very large and complex ones.

The organization of this paper is as follows. First, in Sec-
tion 2, some basic principles of consistency-based diagnosis
are introduced, follows by a compact summary of the method
of weighted model counting, and the mapping of MBD to
Bayesian networks. As our work on partitioned positive
weighted model counting has been extensive published, we
refer for details about how it works to those publications (Dal
& Lucas, 2017; Dal, Michels, & Lucas, 2017; Dal et al., 2021,
2023). In Section 3 the compositional method of assumption-
based Bayesian model-based diagnosis is developed. Experi-
mental results are summarized in Section 4, which is followed
by conclusions and a discussion of the results in Section 5.

2. BACKGROUND

2.1. Consistency-based Diagnosis

Given specific input and output of a cyberphysical system,
the output of the model of the system is compared with the
1https://github.com/gisodal/paragnosis
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Figure 1. Full adder with inputs and observed and pre-
dicted outputs. Here, Obs = {in1(X1) = 1, in2(X1) =
0, in1(A2) = 1, out(X2) = 1, out(R1) = 0}.

observed output of the (real) system. A discrepancy between
these two indicates a fault or malfunction in the actual system
and explains the name ‘consistency-based diagnosis’ (Reiter,
1987). Below, some of the common definitions that occur
in the literature on CBD are repeated and adapted, where in
particular (de Kleer, Mackworth, & Reiter, 1992) is followed.

A diagnostic problem DP is defined as a system SYS together
with a set of observation Obs: DP = (SYS,Obs). A sys-
tem SYS consists of a system description SD and a set of
components Comps: SYS = (SD,Comps). The system de-
scription defines the normal behavior of components and how
these components are connected by means of first-order log-
ical sentences. Given SYS, a diagnosis D ⊆ Comps is de-
fined as a subset-minimal set of components that, when be-
having abnormally, explains the observation of a faulty sys-
tem. Formally, a diagnosis is defined as a subset-minimal set
D ⊆ Comps such that:

SD∪Obs∪{Ab(c) | c ∈ D}∪{¬Ab(c) | c ∈ Comps\D} 2 ⊥
(1)

where ‘Ab’ is the abnormality predicate that indicates that
a component c behaves abnormally (and thus ¬Ab indicates
normal behavior) and ⊥ is falsum (the left-hand side of 2 is
consistent).

Example 2.1 (Adapted from (Reiter, 1987)). Consider the
logical circuit depicted in Fig. 1, which represents a full adder,
i.e. a circuit that can be used for the addition of two bits with
carry-in and carry-out bits. This circuit consists of two AND
gates (A1 and A2), one OR gate (R1) and two exclusive-Or
(XOR) gates (X1 andX2); Comps = {A1, A2, X1, X2, R1}.
The input and output of components c are denoted as in(c)
and out(c), respectively.

The behavior description SD consists of the following ax-
ioms:

¬Ab(c) → out(c) = and(in1(c), in2(c)), for c ∈ {A1, A2},
¬Ab(c) → out(c) = xor(in1(c), in2(c)), for c ∈ {X1, X2},
¬Ab(c) → out(c) = or(in1(c), in2(c)), for c = R1.

These logical rules describe the normal behavior of each in-
dividual component (gate).
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The component connections are described as follows:

out(X1) = in2(A2) out(X1) = in1(X2)

out(A2) = in1(R1) in1(A2) = in2(X2)

in1(X1) = in1(A1) in2(X1) = in2(A1) .

out(A1) = in2(R1)

With the observations Obs as indicated in Fig. 1 it is clear
that when assuming the empty diagnosis, D = ∅ — all com-
ponents are behaving normally — 1 will give an inconsis-
tency, as also indicated in the figure (predicted and observed
outputs differ). There are multiple solutions for the diagnos-
tic problem in this case. For example, D = {X1}, D′ =
{X2, R1}, and D′′ = {X2, A2} are diagnoses.

2.2. Weighted Model Counting

2.2.1. Bayesian Networks

A Bayesian network (BN) B = (G,P ) is a directed acyclic
graph G = (V,A) that associates 1–1 random variables Xv

to nodes v ∈ V in the graph (Pearl, 1988). The directed
edges (v, w) ∈ A represent conditional (in)dependence as-
sumptions and P stands for a joint probability distribution of
the set of variables XV defined as follows:

P (XV = xV ) =
∏

v∈V
P (Xv = xv | Xπ(v) = xπ(v)) (2)

Thus, a BN is defined in terms of a (family of) conditional
probability distributions ofXv ∈ XV given the variables cor-
responding to the parents π(v) of v ∈ V in the graph, i.e.,
Xπ(v), specified as P (Xv |Xπ(v)), called conditional proba-
bility tables or CPTs for short in the following.

Posterior probability distributions of the form

P (XU | Evidence), (3)

with ‘Evidence’ a set of observations or measurements con-
cerning particular variables Xv ∈ XV , with typically v 6∈ U ,
U ⊆ V , can be computed based on the specification of a BN
—a process called probabilistic inference or reasoning— us-
ing common axioms of probability theory. However, for real-
life networks advanced algorithms are required as the com-
putation is NP-hard in general and often quite intensive for
real-life networks (Koller & Friedman, 2009).

By exploiting the conditional independence assumptions, BNs
represent concise factorizations of a joint probability distri-
bution. The size of the factorization has direct implications
toward the cost of probabilistic inference. A more expres-
sive model must be used to in order to exploit properties of
CPTs (Chavira & Darwiche, 2008). A prominent way of
achieving this is to find a more concise and canonical repre-
sentation such as a Binary Decision Diagram (BDD) (Bryant,
1986). Compiling a BN to a decision diagram (DD) rep-

Table 1. Three examples of models of the encoding of vari-
able X and associated probability distribution.

Models Associated probability
1 x1 x2 x3 ω1 ω2 W (ω1)W (ω2)=0.8 · 1 =0.8
2 x1 x2 x3 ω1 ω2 W (ω1)W (ω2)=1 · 0.1 =0.1
3 x1 x2 x3 ω1 ω2 W (ω1)W (ω2)=1 · 0.1 =0.1

resentation is commonly referred to as knowledge compila-
tion (Darwiche & Marquis, 2002), or simply compilation.

2.2.2. Encoding

Prior to compiling a BN to a DD, we require an encoding to
transition from the multi-valued domain of discrete random
variables to the Boolean domain. There are multiple ways
to do this. We choose to first translate a BN to a Boolean
formula with dedicated variables to represent probabilities
(Chavira & Darwiche, 2008; Dal & Lucas, 2017).

Conjunctive Normal Form (CNF) from logic, where formulas
consist of conjunctions of subformulas of literals with only
disjunctions, called clauses, is commonly used to facilitate
compilation. We create for every Xv ∈ XV a set of atoms
a(Xv) = {x1, . . . , xn}. Semantically, xi ∈ a(Xv) repre-
sents Xv being equal its ith value. In addition, an atom ωj is
introduced for every unique probability in Xv’s CPT, i.e., ωj
can refer to multiple distinct entries in Xv’s CPT if they rep-
resent the same probability. A clause is introduced for each
entry of the CPT, with an ωj atom that has a weight W (ωj)
that is linked to the actual probability, and W (ωj) = 1. Fi-
nally clauses are added to prevent inconsistent representa-
tions, such as making sure that a variable cannot get multiple
values at the same time. This is illustrated by an example (Dal
& Lucas, 2017)

Example 2.2 (Bayesian Network encoding). Let BN B be
defined for variables {X,Y } with factorization P (X,Y ) =
P (Y | X)P (X). For simplicity’s sake, we focus on just vari-
able X; X has three values, thus the CPT has 3 entries, in
this case only two distinct. To encode X and its probabilities
we create atoms a(X) = {x1, x2, x3}. The atom ω1 is intro-
duced for X = 1, ω2 for X = 2 and X = 3 (as they have the
same probability), with W (ω1) = 0.8, W (ω2) = 0.1.

The CNF representation is as follows:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧
(x1 ∨ ω1) ∧ (x2 ∨ ω2) ∧ (x3 ∨ ω2)

The first clause enumerates the possible values ofX , whereas
the second to fourth clause ensure that X (as a random vari-
able) cannot have more than one value. The last three clauses
link a probability to an actual value of X . The encoding
includes the truth assignments (models) for variable X as
shown in Table 1. Note that the weighted model count sums
to 1.0 for this selection of models. However, there are other
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models of this CNF, e.g., model {x1,x2,x3,ω1,ω2}, model
{x1, x2, x3, ω1, ω2}, etc. Only minimal models sum to 1.0,
i.e., models with the largest number of negations.

2.2.3. Compilation

Now that we have an encoding, we can consider its com-
pilation to a Weighted Positive Binary Decision Diagrams
(WPBDD) (Dal & Lucas, 2017). A WPBDD is an ordered
BDD that represents a concise factorization of a Boolean for-
mula f as a (rooted) directed acyclic graph with decision
nodes, and two terminal nodes labeled with > (true) and ⊥
(false). Each non-terminal node v is labeled with a Boolean
variable var(v) = xv and has two children, high(v) and low(v),
with a set of weight variables weights(v) at the edge to node
high(v) (explaining the adjective ‘positive’ in WPBDD). Each
root-terminal path contains a variable at most once, and in a
particular total or partial order.

A CNF encoding as described above acts as an entry point for
the language compiler (Dudek, Phan, & Vardi, 2020). Such
compilers target different variations of DDs.

The respective DD is built using the typical bottom-up strat-
egy (Bryant, 1986), by applying DD operations to construct
a DD representing the encoded formula from the previous
step. The process of compiling into a respective DD is by
far the most expensive operation, compared to the inference
step, which is linear in the size of the DD as desired.

2.2.4. Inference

Inference is performed through Weighted Model Counting on
the DD, WMC for short (Chavira & Darwiche, 2008; Dar-
wiche & Marquis, 2021). This process sums the weight of
every truth assignment. In the decision diagram, these as-
signments are represented by paths and the weights by edge
labels. Edges to nodes high(v) and low(v) are solid → and
dashed 99K, respectively (see below). Since these paths often
overlap in the DD structure, inference through model count-
ing is linear in the size of the target representation (Darwiche
& Marquis, 2002).

Let’s look at a WPBDD compilation and inference example.
A WPBDD exactly represents the encoding provided. In or-
der to perform inference we can trivially transform the logical
circuit that the WPBDD represents into an arithmetic circuit.

Example 2.3 (Compilation and inference). Consider again
variable X from Example 2.2. For the compiled DD the or-
dering for variable X is ordering x3 ≺ x2 ≺ x1. Reduction
rules specific to WPBDDs allow the removal of the x2 node
to further reduce its size. Each path from the root to the >-
terminal semantically implies evidence. There are three pos-
sible paths shown below. If we have evidence prior to travers-
ing the compiled representation, we only consider the paths
that are consistent with the evidence.

Path Logic Semantics
x3 → > x1 ∧ x2 ∧ x3 X = 3
x3 99K x2 → > x1 ∧ x2 ∧ x3 X = 2
x3 99K x2 99K x1 → > x1 ∧ x2 ∧ x3 X = 1

To perform inference, we need to link to the probabilities that
allows us to compute P (X = 3) = 0.1, by the assignment
(x1, x2, x3) = (⊥,⊥,>).
The tool PARAGNOSIS offers important ways to optimize com-
pilation and inference by partitioning and parallelization (for
details see (Dal et al., 2021, 2023)).

2.3. Mapping to a Bayesian Network

To add a probabilistic aspect to consistency-based diagnosis,
a logical diagnostic problem can be mapped to a Bayesian
network. There are different ways for translating a diagnostic
problem into a Bayesian diagnostic problem. Two of these
will be highlighted. One of these is the traditional method
proposed by Pearl (Pearl, 1988), and implemented later by
Srinivas (Srinivas, 1994), and the other is a more recent adap-
tation introduced by us. The latter one is used for this re-
search, but since it is based on the traditional method both
will be expanded upon.

2.3.1. Pearl’s Method

Following Pearl’s method (Pearl, 1988), in Fig. 2a an abstract
2-component system has been translated into a Bayesian net-
work. Each input and output of a component are modeled
as nodes. A component is modeled as an output node that is
the child of all its input nodes. Note that one of the inputs
of component L is the output of component K and thus the
output node of K is directly linked to the output node of L.
Next to these, per component, a health node H (also called
‘abnormality node’ in the literature) is added as the parent
of the output node. This node corresponds to the abnormal-
ity predicate in MBD and similarly indicates whether or not
the component behaves abnormally: the abnormality literal
of the traditional approach could be mimicked by assigning
the values ‘normal’, corresponding logically to the assump-
tion ‘¬Ab(c)’, whereas the value ‘abnormal’ would corre-
spond to ‘Ab(c)’. However, a disadvantage of this approach
is that health nodes and input nodes are independent; they
only become conditionally dependent when a common child
of input nodes or a descendant of the child is instantiated to a
value (Pearl, 1988).

2.3.2. Method Based on Connected Health Nodes

The method which is used in the present paper no longer
assumes that inputs and health nodes are independent. The
health nodes support enforcing extra dependencies between
the inputs and outputs, and when none of the children or de-
scendants of the children of the input nodes are instantiated.
This method is illustrated in Fig. 2b. Note that in this repre-
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(a) Pearl’s method with health nodes; health nodes shaded.
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(b) New method with health nodes connecting inputs and out-
put; health nodes are shaded.

Figure 2. Two methods of mapping of a simple system model
with two components K and L to a Bayesian network.

sentation, all inputs are explicitly represented in the Bayesian
network and the relationship between the output of the pre-
vious subpart (e.g. component K) and the next subpart (e.g.
component L) is represented by an arc between the output
node and one input node (e.g. the arc OK → I1L). The con-
ditional probability distribution of any connected output node
O, P (O | I1, . . . , In, H), is such that P (O | I1, . . . , In, H =
normal) ∈ {0, 1}, dependent on the value of input variables
Ik, with k = 1, . . . , n.

2.3.3. Establishing a Bayesian Diagnosis

With the logical diagnostic problem mapped to a Bayesian
diagnostic problem, probabilistic inference methods can be
used to derive whether or not the components behave cor-
rectly as expected to form a diagnosis (Pearl, 1988).

Before such derivation can take place, first the evidence, con-

sisting of observed values of inputs and specific outputs, should
be included, which is analogous to the observations ‘Obs’
in MBD. With probabilistic inference methods, the posterior
probabilities of each of the chosen health nodes can be calcu-
lated. Then for a given set of health variables H , a diagnosis
is defined as follows:

D = argmax
h

P (H = h | Evidence,Health-assumptions)

(4)
i.e., the assignment h to H with the maximum probability,
where it is possible to condition on the health variables not
included in H by ‘Health-assumptions’, the other health vari-
ables that are given an (assumed or observed) value. We call
this process assumption-based Bayesian model-based diag-
nosis, or Bayesian MBD for short.

The same method can be used for Pearl’s Bayesian-network
structure of a diagnostic model. However, in that case it is
mandatory to instantiate the last output variables to enforce
dependence between input and health values and one can no
longer simulate various flow schemes.

3. METHODOLOGY

To investigate whether weighted model counting with parti-
tioning offers a suitable and fast algorithm for Bayesian model-
based diagnosis, some Bayesian MBD models were designed.
Unfortunately, it is virtually impossible to get access to large
industrial MBD systems with their associated data for a publi-
cation, because of the industry’s fear of disclosure of
competition-sensitive information to the public domain. For
this reason, we had to resort to designing an artificial model,
that nevertheless was inspired by existing pipe systems as
used in the chemical and oil industry.

The research question that is explored in the remainder of this
paper is whether partitioned positive weighted model count-
ing can effectively deal with large Bayesian MBD models in
such a way that acceptable diagnostic results are obtained.
For this purpose the PARAGNOSIS toolkit was implemented
(Dal et al., 2023).

3.1. Basic Elements

Bayesian MBD requires the development of Bayesian-network
models of systems, where the models consist of components,
where some of those components are identical in nature, and
compositional ways to merge these models together to build
an overall model of a system. The result will be an abstrac-
tion of the real-world system that reflects both structure and
behavior of the real-world system and that can be used for
simulation purposes. In addition for MBD it is necessary to
include behavior modes, e.g., whether the component is be-
having normally or abnormally (other modes are sometimes
also used) for each of the components that could be defec-
tive, which will be represented as health variables. Finally,
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Figure 3. System of connected fluid pipes with one join, one
split, and four flow sensors.

information about the behavior of a component is obtained
through sensors.

3.2. Generating a System

Consider a pipe system, such as the one shown in Fig. 3, that
consists of connected pipes, joints of pipes, and splittings of
pipes (splits) that transport a fluid, e.g., water or oil, and have
an input and output of fluid. The flow of the fluid is measured
by means of flow sensors and is discretized into three states:
‘maxflow’, ‘lowflow’, and ‘noflow’. Each pipe has one flow
coming into it and one flow going out of it; if pipe x behaves
normally:

∀x(PipeIn(x) = v → PipeOut(x) = v)

with v a free variable standing for a state. However, the actual
health status of the pipe is ignored here, and assumed to be
normal. Alternatively, if we want to take into account the
health status and pipe x has a leak, the outgoing flow will be
lower than the incoming flow:

∀x((PipeIn(x) = maxflow ∧ Health(x) = leak)→
PipeOut(x) = lowflow))

whereas for normal health we get:

∀x((PipeIn(x) = v ∧ Health(x) = normal)→
PipeOut(x) = v))

Thus, it is needed to include the health status as an additional
condition. Similar logical specifications can be developed for
the other elements of pipe systems, i.e., the joints and split-
tings.

As we use individual pipe components to develop (generate)
pipe systems of various complexity and size, as is also done
when developing real-life pipe systems, we will number pipe
components from input to output flow of the entire system, in
terms of two parameters: width (from left to right) and height
(top to bottom) of the directed graph (starting with 1). We
come back to this issue in Section 4.

A clear disadvantage is that uncertainty in the health status
and the likelihood that a leak may give rise to low or no flow is

missing in the logical representation. Bayesian model-based
diagnosis will support representing this important aspect of
diagnosis, i.e., the ability to deal with uncertainty, as will be
discussed below.

3.3. Uncertainty and Bayesian-network Components

To model a system that incorporates uncertainty, we need
design Bayesian-network components that correspond to the
various parts of the real system. Based on the mentioned
specifications in the section above, we distinguish pipe, join,
and split Bayesian-network components. The health status
of a pipe component is controlled by a health variable, called
variously ‘JoinHealth’, ‘PipeHealth’, ‘SplitHealth’. As above,
the continuous flow is mapped to discrete values, we distin-
guish three flow values: maximal (maxflow), low (lowflow),
or absent (noflow).

The three basic Bayesian-network components are depicted
in Fig. 4, 5, and 6. These can be put together in various
topologies giving rise to a plethora of pipe systems. In addi-
tion sensors can be added to components to measure the sta-
tus of the flow in the individual pipes. Sensor readings will be
used below as evidence in the experiments to diagnose faults
in the different pipe systems. Software and figures have been
generated using the R language (R Core Team, 2024), the
R-library bnlearn (Scutari, 2024), with GeNIe Modeler2 for
producing graphical figures.

Figure 4. Pipe-shaped component; there is no need to model
the actual pipe as it is sufficient to represent the input and
output of the pipe and how these relate to each other by means
of health modes.

3.4. Compositionality by Probability Distributions

Each pipe is modeled as a flow out of ‘PipeOut’ with one
flow coming into ‘PipeIn’. The prior probability of a pipe’s
health being normal is set to 0.8 (P (PipeHealth = normal) =
0.8). The distribution of the input of the pipe depends on the
output of the previous component in a deterministic manner,

2https://www.bayesfusion.com/genie
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Figure 5. Split-shaped component consisting of a single in-
put and in this case two outputs. In addition, each output is
controlled by a health mode.

Figure 6. Join-shaped component consisting of two (or more)
inputs and a single output that merges the inputs. In addition,
the actual merge is controlled by one health node per input.

i.e., we do not consider defects between components. Since
this structure is the same for every pipe, the CPT of each pipe
is also identical such that the probability distribution

P (PipeOuti | PipeIni = v,PipeHealthi = w)

is the same for each i, but varies for specific values of v andw
as shown in Table 2. In case the component behaves normally,
there is no impact on the flow of the pipes, which reflects
the logical specifications of Section 3.2. Furthermore, the
CPT reflects the impact of a leaking pipe. Given a normal
flow, if the pipe is leaking, there is a high probability the flow
is reduced, and in severe cases, it may even lead to no flow
in the output. If there is low flow in the input, we assume

Table 2. CPT for the output node of a pipe.

PipeOuti
maxflow lowflow noflow

PipeIni PipeHealthi
maxflow normal 1 0 0

leak 0.1 0.8 0.1
lowflow normal 0 1 0

leak 0 0.8 0.2
noflow normal 0 0 1

leak 0 0 1

that a leaking pipe has less impact and there is still a high
probability there is a low flow in the output, though it may be
diminished to no flow.

The split-shaped component is modeled in a similar manner
to a pipe, with the exception that this component contains
multiple health and output nodes. That is, the prior distri-
butions P (SplitHealthi) = P (PipeHealthj), the distribution
of the ‘splittingIn’ is determined by the output in its parent
component, and

P (SplittingOuti|SplittingIn = v,SplitHealthi = w) =

P (PipeOutj |PipeInj = v,PipeHealthj = w)

for values of i, j (instances of the named components), v and
w.

4. EXPERIMENTS AND EVALUATION

We have checked the validity of the proposed models in order
to prove their usefulness. For the purpose of evaluating the di-
agnostic capabilities of our weighted model counting method,
the 3rd aim of the research, we have generated pipe Bayesian
networks ‘pipes-sensors-w-h’ with height h and width w as
described in Section 3.2. This results in w parallel pipes that
run h layers deep. Each pipe in the first layer is directly con-
nected to one pipe in the second layer downstream, and so on,
for h layers. This effectively lengthens the pipes in the first
layer, and creates w parallel pipes of length h. Each pipe in
every layer has a sensor that registers flow or noflow, and is
identified by the coordinate in its name. For instance, ‘sen-
sor2 3’ is the sensor attached to the second pipe in layer 3.

4.1. Experimental Setup

We report some experimental results of our software tool
PARAGNOSIS and various pipe Bayesian MBD models. All
below experiments ran on a system with as CPU an Intel
Hexa Core i7-8750H (2.20-4.10Ghz), 9Mb cache 45W, with
Kingston HyperX 16Gb (2× 8Gb) DDR4 2400Mhz RAM.

Evidence is only set on ‘FlowOut’, ‘FlowIn’, and (some of
the) sensors. Only consistent evidence is considered. This
means that ‘sensor2 i’ ≥ ‘sensor2 j’, for i < j. In other
terms, it is impossible for an upstream pipe to have no flow
and for a downstream pipe to have flow at the same time.
We also only consider FlowIn > FlowOut. When we say
maxflow to lowflow or maxflow to noflow, this means from
FlowIn = maxflow to FlowOut = lowflow, or to FlowOut =
noflow, respectively.

Consider network ‘pipes-sensors-5-2’ (5 parallel pipes, 2 lay-
ers deep). Table 3 shows diagnostic results for maxflow to
noflow, Table 4 for maxflow to lowflow and Table 5 for lowflow
to noflow. To allow quick reading we used the following
abbreviations: ‘pH’ stand for ‘pipeHealth’; ‘jH’ for ‘join-
Health’; ‘sH’ for ‘splitHealth’, respectively. We compute the
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Table 3. Results for network ‘pipes-sensors-5-2’ for maxflow to noflow. Posteriors are computed for health nodes and indicate
the probability of a leak. Probabilities preceded by ‘+’ indicate the posterior’s increase compared to the prior. The following
abbreviations are used: ‘pH’ stands for ‘pipeHealth’; ‘jH’ for ‘joinHealth’; ‘sH’ for ‘splitHealth’.

Sensors Remaining sensors are set to flow Remaining sensors are not set
set to
noflow

3 variables with
highest posteriors

3 variables with most
increased posteriors

3 variables with
highest posteriors

3 variables with most
increased posteriors

sensor1 1
sensor1 2

pH1 1 (0.738)
jH2 (0.390)
jH3 (0.390)

pH1 1 (+0.514)
sH1 (+0.201)
pH1 2 (+0.024)

pH1 1 (0.740)
sH1 (0.388)
jH2 (0.380)

pH1 1 (+0.516)
sH1 (+0.198)
pH1 2 (+0.024)

sensor2 1
sensor2 2

pH2 1 (0.738)
jH1 (0.390)
jH3 (0.390)

pH2 1 (+0.514)
sH2 (+0.201)
pH2 2 (+0.024)

pH2 1 (0.740)
sH2 (0.388)
jH1 (0.380)

pH2 1 (+0.516)
sH2 (+0.198)
pH2 2 (+0.024)

sensor3 1
sensor3 2

pH3 1 (0.738)
jH1 (0.390)
jH2 (0.390)

pH3 1 (+0.514)
sH3 (+0.201)
pH3 2 (+0.024)

pH3 1 (0.740)
sH3 (0.388)
jH1 (0.380)

pH3 1 (+0.516)
sH3 (+0.198)
pH3 2 (+0.024)

sensor4 1
sensor4 2

pH4 1 (0.738)
jH1 (0.390)
jH2 (0.390)

pH4 1 (+0.514)
sH4 (+0.201)
pH4 2 (+0.024)

pH4 1 (0.740)
sH4 (0.388)
jH1 (0.380)

pH4 1 (+0.516)
sH4 (+0.198)
pH4 2 (+0.024)

sensor5 1
sensor5 2

pH5 1 (0.738)
jH1 (0.390)
jH2 (0.390)

pH5 1 (+0.514)
sH5 (+0.201)
pH5 2 (+0.024)

pH5 1 (0.740)
sH5 (0.388)
jH1 (0.380)

pH5 1 (+0.516)
sH5 (+0.198)
pH5 2 (+0.024)

sensor1 2 pH1 2 (0.579)
jH2 (0.390)
jH3 (0.390)

pH1 2 (+0.354)
sH1 (+0.039)
jH2 (+0.011)

pH1 1 (0.444)
pH1 2 (0.444)
jH2 (0.380)

pH1 1 (+0.219)
pH1 2 (+0.219)
sH1 (+0.103)

sensor2 2 pH2 2 (0.579)
jH1 (0.390)
jH3 (0.390)

pH2 2 (+0.354)
sH2 (+0.039)
jH1 (+0.011)

pH2 1 (0.444)
pH2 2 (0.444)
jH1 (0.380)

pH2 1 (+0.219)
pH2 2 (+0.219)
sH2 (+0.103)

sensor3 2 pH3 2 (0.579)
jH1 (0.390)
jH2 (0.390)

pH3 2 (+0.354)
sH3 (+0.039)
jH1 (+0.011)

pH3 1 (0.444)
pH3 2 (0.444)
jH1 (0.380)

pH3 1 (+0.219)
pH3 2 (+0.219)
sH3 (+0.103)

sensor4 2 pH4 2 (0.579)
jH1 (0.390)
jH2 (0.390)

pH4 2 (+0.354)
sH4 (+0.039)
jH1 (+0.011)

pH4 1 (0.444)
pH4 2 (0.444)
jH1 (0.380)

pH4 1 (+0.219)
pH4 2 (+0.219)
sH4 (+0.103)

sensor5 2 pH5 2 (0.579)
jH1 (0.390)
jH2 (0.390)

pH5 2 (+0.354)
sH5 (+0.039)
jH1 (+0.011)

pH5 1 (0.444)
pH5 2 (0.444)
jH1 (0.380)

pH5 1 (+0.219)
pH5 2 (+0.219)
sH5 (+0.103)

posteriors of value leak for all health variables, given the ev-
idence that a set of sensors is set to noflow. This set can be
found in the leftmost column. ‘FlowOut’ and ‘FlowIn’ are
also observed respectively.

We compare two experiments. Columns 2-3 represent the ex-
periment where all sensors are observed. Unobserved sensors
(those not present in column 1) are set to flow. Columns 4-5
represent the experiment where unobserved sensors are not
set. Columns 2 and 4 contain the health variables with the
highest leak probability, whereas column 3 and 5 contain the
health variables with the most increased leak posteriors, com-
pared to the posteriors computed with only ‘FlowOut’ and
‘FlowIn’ in the evidence.

4.2. Observations and Diagnostic Results

The posteriors in Table 3 (maxflow to noflow) show that di-
agnoses are consistent with the evidence. Consider evidence
‘sensor1 1’ and ‘sensor1 2’ equal to noflow and all remain-
ing sensors are set to flow. The most likely location for a
leak is ‘pipeHealth1 1’. When the evidence does not include

values for sensor1 1, we see that pipeHealth1 2 indicates a
leak. Resulting diagnoses, consisting of the highest probabil-
ities for the health variables, seemed to correspond to what
we expected.

When removing the flow sensors from the evidence we see
that the evidence ‘sensor1 2’ does not lead to a definitive leak
(a probability greater than 0.5) as indicated by pipeHealth1 2.
However, pipeHealth1 2 has the highest leak probability along
with upstream pipeHealth1 1. Their posteriors also have in-
creased the most as indicated in the last column. This finding
is also logical, we have not set ‘sensor1 1’ to flow, thus the
leak can still be in any layer.

For Table 4 and Table 5 we see the same behavior, thereby
validating the diagnostic capabilities of our Bayesian MBD
approach.

4.3. Larger Networks

We have created larger systems using the description in Sec-
tion 4.1, and perform weighted model counting using PARAG-
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Table 4. Results for network ‘pipes-sensors-5-2’ for maxflow to lowflow. Posteriors are computed for health nodes and indicate
the probability of a leak. Probabilities preceded by ‘+’ indicate the posterior’s increase compared to the prior. The following
abbreviations are used: ‘pH’ stands for ‘pipeHealth’; ‘jH’ for ‘joinHealth’; ‘sH’ for ‘splitHealth’.

Sensors Remaining sensors are set to flow Remaining sensors are not set
set to
noflow

3 variables with
highest posteriors

3 variables with most
increased posteriors

3 variables with
highest posteriors

3 variables with most
increased posteriors

sensor1 1
sensor1 2

pH1 1 (0.752)
sH1 (0.388)
jH2 (0.264)

pH1 1 (+0.522)
sH1 (+0.201)
pH1 2 (+0.021)

pH1 1 (0.750)
sH1 (0.386)
pH1 2 (0.251)

pH1 1 (+0.520)
sH1 (+0.199)
pH1 2 (+0.020)

sensor2 1
sensor2 2

pH2 1 (0.752)
sH2 (0.388)
jH1 (0.264)

pH2 1 (+0.522)
sH2 (+0.201)
pH2 2 (+0.021)

pH2 1 (0.750)
sH2 (0.386)
pH2 2 (0.251)

pH2 1 (+0.520)
sH2 (+0.199)
pH2 2 (+0.020)

sensor3 1
sensor3 2

pH3 1 (0.752)
sH3 (0.388)
jH1 (0.264)

pH3 1 (+0.522)
sH3 (+0.201)
pH3 2 (+0.021)

pH3 1 (0.750)
sH3 (0.386)
pH3 2 (0.251)

pH3 1 (+0.520)
sH3 (+0.199)
pH3 2 (+0.020)

sensor4 1
sensor4 2

pH4 1 (0.752)
sH4 (0.388)
jH1 (0.264)

pH4 1 (+0.522)
sH4 (+0.201)
pH4 2 (+0.021)

pH4 1 (0.750)
sH4 (0.386)
pH4 2 (0.251)

pH4 1 (+0.520)
sH4 (+0.199)
pH4 2 (+0.020)

sensor5 1
sensor5 2

pH5 1 (0.752)
sH5 (0.388)
jH1 (0.264)

pH5 1 (+0.522)
sH5 (+0.201)
pH5 2 (+0.021)

pH5 1 (0.750)
sH5 (0.386)
pH5 2 (0.251)

pH5 1 (+0.520)
sH5 (+0.199)
pH5 2 (+0.020)

sensor1 2 pH1 2 (0.653)
jH2 (0.283)
jH3 (0.283)

pH1 2 (+0.423)
sH1 (+0.028)
jH2 (+0.015)

pH1 1 (0.459)
pH1 2 (0.459)
sH1 (0.292)

pH1 1 (+0.228)
pH1 2 (+0.228)
sH1 (+0.105)

sensor2 2 pH2 2 (0.653)
jH1 (0.283)
jH3 (0.283)

pH2 2 (+0.423)
sH2 (+0.028)
jH1 (+0.015)

pH2 1 (0.459)
pH2 2 (0.459)
sH2 (0.292)

pH2 1 (+0.228)
pH2 2 (+0.228)
sH2 (+0.105)

sensor3 2 pH3 2 (0.653)
jH1 (0.283)
jH2 (0.283)

pH3 2 (+0.423)
sH3 (+0.028)
jH1 (+0.015)

pH3 1 (0.459)
pH3 2 (0.459)
sH3 (0.292)

pH3 1 (+0.228)
pH3 2 (+0.228)
sH3 (+0.105)

sensor4 2 pH4 2 (0.653)
jH1 (0.283)
jH2 (0.283)

pH4 2 (+0.423)
sH4 (+0.028)
jH1 (+0.015)

pH4 1 (0.459)
pH4 2 (0.459)
sH4 (0.292)

pH4 1 (+0.228)
pH4 2 (+0.228)
sH4 (+0.105)

sensor5 2 pH5 2 (0.653)
jH1 (0.283)
jH2 (0.283)

pH5 2 (+0.423)
sH5 (+0.028)
jH1 (+0.015)

pH5 1 (0.459)
pH5 2 (0.459)
sH5 (0.292)

pH5 1 (+0.228)
pH5 2 (+0.228)
sH5 (+0.105)

NOSIS (Dal et al., 2023). It is clear that the created systems
are particularly strenuous on the inference side, due to the
joining node in the network. Its CPT increases exponentially
when width w increases. Table 6 shows compilation and in-
ference times of these networks. The results reflect the afore-
mentioned comment, as compilation and inference time most
notably increase as the width of the network increases. As a
comparison, the well known Munin network (Jensen & An-
dreassen, 2008) is considered to be large, and has 1041 vari-
ables with 98423 probabilities (Dal et al., 2021). This demon-
strates the inference capabilities of weighted model counting
using PARAGNOSIS (Dal et al., 2023). Fig. 7 show a nearly
linear increase in compilation time with respect to the num-
ber of probabilities in the networks. However, the increase in
compilation and inference time is more exponential in nature
as we increase the width of the network.

5. DISCUSSION AND CONCLUSIONS

Following the analysis of the diagnostic behavior, it appears
that the compositional Bayesian-network structures developed

0
1
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3
4
5

0 1 2 3 4 5Ti
m

e
(m

s)
×
10

4

Number of probabilities ×106

Compile time

Figure 7. Compilations time with respect to the number of
probabilities.

in the sections above display behavior that is at least partly
natural and intuitive. For example, a Bayesian model-based
diagnostic model of a pipe system that has no input flow will
raise an inconsistency in its (conditional) probability distri-
bution if its output flow is assumed to be low or maximal.
Another interesting aspect of the behavior is that faults are
assumed to be closest (in terms of path length) to the entered
observations that are incompatible with the expected behav-
ior. This is a consequence of the propagation of probabilistic
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Table 5. Results for network ‘pipes-sensors-5-2’ for lowflow to noflow. Posteriors are computed for health nodes and indicate
the probability of a leaku. Probabilities preceded by ‘+’ indicate the posterior’s increase compared to the prior. The following
abbreviations are used: ‘pH’ stands for ‘pipeHealth’; ‘jH’ for ‘joinHealth’; ‘sH’ for ‘splitHealth’.

Sensors Remaining sensors are set to flow Remaining sensors are not set
set to
noflow

3 variables with
highest posteriors

3 variables with most
increased posteriors

3 variables with
highest posteriors

3 variables with most
increased posteriors

sensor1 1
sensor1 2

sH1 (0.506)
pH1 1 (0.498)
jH2 (0.360)

pH1 1 (+0.293)
sH1 (+0.216)
pH1 2 (+0.042)

pH1 1 (0.508)
sH1 (0.500)
jH2 (0.356)

pH1 1 (+0.303)
sH1 (+0.210)
pH1 2 (+0.044)

sensor2 1
sensor2 2

sH2 (0.506)
pH2 1 (0.498)
jH1 (0.360)

pH2 1 (+0.293)
sH2 (+0.216)
pH2 2 (+0.042)

pH2 1 (0.508)
sH2 (0.500)
jH1 (0.356)

pH2 1 (+0.303)
sH2 (+0.210)
pH2 2 (+0.044)

sensor3 1
sensor3 2

sH3 (0.506)
pH3 1 (0.498)
jH1 (0.360)

pH3 1 (+0.293)
sH3 (+0.216)
pH3 2 (+0.042)

pH3 1 (0.508)
sH3 (0.500)
jH1 (0.356)

pH3 1 (+0.303)
sH3 (+0.210)
pH3 2 (+0.044)

sensor4 1
sensor4 2

sH4 (0.506)
pH4 1 (0.498)
jH1 (0.360)

pH4 1 (+0.293)
sH4 (+0.216)
pH4 2 (+0.042)

pH4 1 (0.508)
sH4 (0.500)
jH1 (0.356)

pH4 1 (+0.303)
sH4 (+0.210)
pH4 2 (+0.044)

sensor5 1
sensor5 2

sH5 (0.506)
pH5 1 (0.498)
jH1 (0.360)

pH5 1 (+0.293)
sH5 (+0.216)
pH5 2 (+0.042)

pH5 1 (0.508)
sH5 (0.500)
jH1 (0.356)

pH5 1 (+0.303)
sH5 (+0.210)
pH5 2 (+0.044)

sensor1 2 pH1 2 (0.376)
jH2 (0.360)
jH3 (0.360)

pH1 2 (+0.171)
jH2 (+0.001)
jH3 (+0.001)

sH1 (0.372)
jH2 (0.357)
jH3 (0.357)

pH1 1 (+0.117)
pH1 2 (+0.117)
sH1 (+0.081)

sensor2 2 pH2 2 (0.376)
jH1 (0.360)
jH3 (0.360)

pH2 2 (+0.171)
jH1 (+0.001)
jH3 (+0.001)

sH2 (0.372)
jH1 (0.357)
jH3 (0.357)

pH2 1 (+0.117)
pH2 2 (+0.117)
sH2 (+0.081)

sensor3 2 pH3 2 (0.376)
jH1 (0.360)
jH2 (0.360)

pH3 2 (+0.171)
jH1 (+0.001)
jH2 (+0.001)

sH3 (0.372)
jH1 (0.357)
jH2 (0.357)

pH3 1 (+0.117)
pH3 2 (+0.117)
sH3 (+0.081)

sensor4 2 pH4 2 (0.376)
jH1 (0.360)
jH2 (0.360)

pH4 2 (+0.171)
jH1 (+0.001)
jH2 (+0.001)

sH4 (0.372)
jH1 (0.357)
jH2 (0.357)

pH4 1 (+0.117)
pH4 2 (+0.117)
sH4 (+0.081)

sensor5 2 pH5 2 (0.376)
jH1 (0.360)
jH2 (0.360)

pH5 2 (+0.171)
jH1 (+0.001)
jH2 (+0.001)

sH5 (0.372)
jH1 (0.357)
jH2 (0.357)

pH5 1 (+0.117)
pH5 2 (+0.117)
sH5 (+0.081)

information through the network which reflects the observa-
tions combined with the associated uncertainty derived from
the conditional probability tables. At first thought, one may
think that this behavior is not compatible with the actual real
world, as one would expect that for identical components, the
likelihood of failure would also be identical independent of
where the component is located in the overall system. How-
ever, as only by observing flow input and output and sensor
data allows one to locate faults, the probabilistic reasoning
provided by a Bayesian model-based diagnostic model right-
fully exploits that information to the maximal extent and does
indeed offer information where to look first.

In principle, the Bayesian-network network structure and its
associated probabilistic parameters can be learned from ob-
servational data of a working real machine, although this will
be associated with some major challenges. Where it would be
straightforward to learn the prior distribution of health vari-
ables from the data, for example for ‘PipeHealth’, it would be
harder to learn the conditional distributions

P (PipeOut|PipeIn = v,PipeHealth = w),

for values of v, w, from data, partly because these proba-
bilities are supposed to represent generic local probabilities,
whereas in real-world systems quite a lot of the local behav-
ior is determined by non-local behavior arising elsewhere in
a system. Measurements that fully explain local behavior
of components will usually not be available. Instead, avail-
able sensor data can be exploited, and basically this requires
the development of new methods to answer questions of how
local probability distributions can be approximated with the
data from real-world systems that can be measured. Since
parameter learning does not appear straightforward, it can be
expected that structure learning will be even harder. However,
here one has to keep in mind that for cyberphysical systems
there often is quite some knowledge available already about
its architecture and functional components, which clearly makes
this problem much less challenging. Thus the positive mes-
sage is that with relatively little effort a good starting point
for developing a Bayesian model-based diagnostic model is
within reach.

It should be mentioned that the example pipe model which
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Table 6. Compilation and inference times for pipes-sensors-w-h, where compilation size is the number of arithmetic operators
in the compiled representation.

Network Number of Number of Compilation Compilation Maginalization
Width w Height h variables probabilities size time (ms) time (ms)

5 10 223 25833 76908 98.165 4.334
5 20 423 28033 128619 116.489 8.927
5 30 623 30233 107223 112.460 6.582
5 40 823 32433 136836 116.275 9.780
5 50 1023 34633 133992 115.188 7.974
5 100 2023 45633 202545 153.610 11.971
5 200 4023 67633 341820 235.962 20.261
6 10 267 143049 127431 905.657 9.245
7 10 311 843561 498813 6085.595 37.000
7 200 5631 902081 645177 6275.068 42.671
8 10 355 5043465 463594 38781.416 36.785

was employed in the research, has some limitations. In the
first place, because of the restriction in our research to prob-
abilistic inference in discrete Bayesian networks. It would
have been more natural to use hybrid Bayesian networks to
represent the behavior of a pipe system, with continuous vari-
ables for the representation of flow and sensor information
and discrete for the health variables. Nevertheless, discrete
variables do allow one to approximate continuous variables
usually to a sufficient degree. Furthermore, in the context of
flow modeling, the assumption that flow can be modeled by
a directed acyclic graph may be questioned, although propa-
gation of probabilistic information goes in both directions, in
and against the direction of the arcs.

The issues mentioned above do not interfere with other con-
clusions concerning the probabilistic diagnostic method de-
signed and whether exact probabilistic inference is feasible
for large diagnostic problems. We have also tested large ver-
sions of our model-based diagnostic models, in order to inves-
tigate the limits of weighted model counting. We are able to
perform weighted model counting in networks that are signif-
icantly larger than the largest networks in the field of Bayesian
networks (Dal et al., 2023).

All in all, this research contributes to ideas on how Bayesian
model-based diagnosis can be applied to large cyberphysical
systems. Future research should shed light on whether the
proposed probabilistic diagnostic methods can be of value in
diagnosing faults in other systems than the pipe systems we
studied.
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