Particle Filter Approach for Prognostics Using Exact Static Parameter Estimation and Consistent Prediction
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Particle filters are widely used in model-based prognostics. They estimate the future health state of an asset based on measurement data and an assumed degradation dynamics. Filters are in general applied to estimate only the states given a known dynamics of the process. In model-based prognostics, the dynamics is assumed to be known in an analytical form, but the parameters vary per device and need to be learned from the measurements as well. This is especially important for the calculation of the remaining useful life (RUL), as the prediction of the future evolution is needed.
There are commonly used approaches for this: Augmenting the state space with the parameter, together with assuming them to stay constant or adding an artificial diffusive evolution to them. The Liu–West filter improves on this by modifying the artificial evolution such that mean and standard deviation of the marginal parameter distribution are kept the same. Both approaches require to choose some tuning parameters, which might be difficult in practical applications. In addition, the model parameter is often assumed frozen for the prediction part, leading to an inconsistency. We propose how a modification of the parameter evolution in case of missing measurements can solve this in both cases.
More recently algorithms for combined state estimation and exact parameter estimation have been introduced, especially the Storvik filter, based on the usage of a sufficient statistic. We analyze how this can be applied to overcome difficulties with existing approaches, avoiding the need for tuning parameters. We also extend the Storvik filter in order to deal with time-steps with missing measurements. Two formally equivalent approaches are presented. These are applicable in all cases of missing measurements, coming either from irregular data acquisition, e.g. only during maintenance or inspection, or as part of the prediction step of the RUL calculation.
We study the different methods for two simple models in order to demonstrate potential issues with existing approaches and to explore the stability of the new one based on the Storvik filter. Finally we apply it to a practical application in the area of electrical distribution systems.
How to Cite
##plugins.themes.bootstrap3.article.details##
Prognostics; Particle Filter; Parameter Estimation; Liu-West filter; Storvik filter
Jouin, M., Gouriveau, R., Hissel, D., P´era, M.-C., & Zerhouni, N. (2016). Particle filter-based prognostics: Review, discussion and perspectives. Mechanical Systems and Signal Processing, 72, 2–31.
Joyce, P., & Marjoram, P. (2008). Approximately sufficient statistics and bayesian computation. Statistical applications in genetics and molecular biology, 7(1).
Liu, J., & West, M. (2001). Combined parameter and state estimation in simulation-based filtering. In A. Doucet,
N. de Freitas, & N. Gordon (Eds.), Sequential monte carlo methods in practice (pp. 197–223). New York, NY: Springer New York. Peng, W., Ye, Z.-S., & Chen, N. (2018). Joint online rul prediction for multivariate deteriorating systems. IEEE Transactions on Industrial Informatics, 15(5), 28702878.
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.