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ABSTRACT

Particle filters are widely used in model-based prognostics.
They estimate the future health state of an asset based on mea-
surement data and an assumed degradation dynamics. Fil-
ters are in general applied to estimate only the states given a
known dynamics of the process. In model-based prognostics,
the dynamics is assumed to be known in an analytical form,
but the parameters vary per device and need to be learned
from the measurements as well. This is especially important
for the calculation of the remaining useful life (RUL), as the
prediction of the future evolution is needed.

There are commonly used approaches for this: Augmenting
the state space with the parameter, together with assuming
them to stay constant or adding an artificial diffusive evolu-
tion to them. The Liu–West filter improves on this by modify-
ing the artificial evolution such that mean and standard devia-
tion of the marginal parameter distribution are kept the same.
Both approaches require to choose some tuning parameters,
which might be difficult in practical applications. In addi-
tion, the model parameter is often assumed frozen for the
prediction part, leading to an inconsistency. We propose how
a modification of the parameter evolution in case of missing
measurements can solve this in both cases.

More recently algorithms for combined state estimation and
exact parameter estimation have been introduced, especially
the Storvik filter, based on the usage of a sufficient statistic.
We analyze how this can be applied to overcome difficulties
with existing approaches, avoiding the need for tuning param-
eters. We also extend the Storvik filter in order to deal with
time-steps with missing measurements. Two formally equiv-
alent approaches are presented. These are applicable in all
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cases of missing measurements, coming either from irregular
data acquisition, e.g. only during maintenance or inspection,
or as part of the prediction step of the RUL calculation.

We study the different methods for two simple models in or-
der to demonstrate potential issues with existing approaches
and to explore the stability of the new one based on the Storvik
filter. Finally we apply it to a practical application in the area
of electrical distribution systems.

1. INTRODUCTION

The most common approach for predicting the end-of-life
(EOL) of a device is to model its degradation. Let xt be a
degradation variable, describing the health of the device and
evolving e.g. with time t. In the simplest case, we define the
(soft) failure of the device as the condition that xt reaches a
predefined critical value xcritical (Goebel et al., 2017; Galar,
Goebel, Sandborn, & Kumar, 2021). xt can here be either
a scalar or a vector, see e.g. (Peng, Ye, & Chen, 2018). We
limit ourselves to the scalar case.

The evolution of xt is in general described by a stochastic
model. We restrict ourselves here to the discrete-time case,
indexed by t, and assume that the state evolves from time
instance t to t+ 1 as

xt+1 ∼ p(xt+1 | xt; θ), (1)

where p is a suitable probability model depending on a pa-
rameter vector θ. We assume the value of θ to be specific to
each individual device rather than describing the behavior of
a fleet and a prior distribution p(θ) to be known.

In most cases the degradation variable xt is not directly mea-
surable but needs to be inferred from an observable zt. This
might be a direct measurement of xt corrupted by measure-
ment error or a quantity that can be indirectly associated with
it. Quite generally the relation between the degradation vari-
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able xt and the observable zt is described by

zt ∼ p(zt | xt; θ), (2)

where p is a probability model possibly also depending on the
parameter vector θ.

The combination of Eqs. (1) and (2) forms a state-space model
(SSM) with unknown parameter θ.

The aim of prognostics is to calculate the remaining useful
life given the measurements z0:t0 up to the current time hori-
zon t0, using the predictive probability

p(xt | z0:t0), t > t0. (3)

Note that in Eq. (3) the parameter θ does not appear, as it has
been marginalized over. The uncertainty associated with θ
is therefore automatically considered. Due to the stochastic
nature of the evolution and the uncertainty in the parameter,
the RUL is itself a random variable. Its distribution is given
by

RUL(t | t0) ∼ p(t | {xt+t0 ≥ xcritical}
∩ {xt′ < xcritical ∀t′ < t+ t0}).

(4)

A review of the prognostics paradigm and its applications
can be found, e.g., in (Si, Wang, Hu, & Zhou, 2011; Jouin,
Gouriveau, Hissel, Péra, & Zerhouni, 2016; Goebel et al.,
2017; Galar et al., 2021).

Determining the RUL requires a combined state and param-
eter estimation approach. In principle, the estimation can be
obtained with any Bayesian method, e.g., a Markov Chain
Monte Carlo (MCMC) approach, that determines the joint
distribution p(x0:t, θ | z0:t0) of all past, present and future
states and the parameter using all measurements until time
t0. In practice, this approach is not viable, since the evalua-
tion has to be repeated each time a new measurement point
is added. Hence, the method becomes computationally more
demanding as time increases. A sequential approach is more
appropriate, such as a sequential Monte Carlo method (SMC),
see e.g. (Doucet, de Freitas, & Gordon, 2001; Chopin & Pa-
paspiliopoulos, 2020). This requires to update the joint dis-
tribution p(xt, θ | z0:t0+1) at each increase of the horizon
taking into account only the new measurement zt0+1 and the
already known joint distribution until t0. The determination
of the distribution of the state x0:t0 , especially of only the cur-
rent state xt0 , is a well-studied problem for known parameter
values, regularly solved with the help of particle filters. In
contrast, the determination of the joint distribution of states
and parameter is a more difficult one and often solved by ap-
plying some approximations.

In addition to the estimation problem for xt0 , prognostics ap-
plications require the ability to make predictions. Indeed, in
order to compute the RUL as in Eq. (4) one needs to calcu-
late the future distribution for xt for t > t0, see Eq. (3). A

related topic is the ability to evolve the sequential approach
when measurements are sparse and obtained at irregular time
intervals only. For instance, we expect measurements to be of
this form, if they are obtained as part of a maintenance or in-
spection routine. If the time interval between measurements
is long, it is beneficial to evolve the distribution of state and
parameter and only keep their values at the current time. It
allows to continue to evolve the distribution up to the next
measurement without the need to restart from the last mea-
surement point.

In this paper, we consider the two issues above and present:

• A critical review of the state of the art on particle based
sequential methods for joint state and parameter estima-
tion in SSMs;

• Proposals on how to extend the methods to deal with
missing measurements, required especially for future pre-
dictions;

• Explore the use of the Storvik filter as an exact approach
to the combined state and parameter estimation problem
for prognostics applications.

The remainder of this paper is organized as follows. In Sec. 2
we briefly review the application of particle filters to SSMs.
In Sec. 3 we present common approaches to perform joint
state and parameter estimation, introducing also a possible
way to handle missing measurements. In Sec. 4 we review the
Storvik filter, an exact method for the combined state and pa-
rameter estimation, together with an extension of the method
in case of missing measurements in Sec. 5. In Sec. 6 we an-
alyze the applicability of the methods for two simple models,
that are typical for prognostics applications, and in Sec. 7 we
present results of the application of the Storvik filter on real
data. We conclude the paper with an outcome and give poten-
tial future directions in Sec. 8.

2. THE PARTICLE FILTER FOR SSMS

The particle filter is synonymous for the SMC approach to
state estimation in nonlinear SSMs. For an introduction and
review see, e.g., (Doucet, Godsill, & Andrieu, 2000; Doucet
et al., 2001; Chopin & Papaspiliopoulos, 2020). Neglecting
the parameter θ, particle filters approximate the probability
distribution of the states by an empirical distribution based
on a set of N particles {xit}Ni=1. The approximation incorpo-
rating weights for each particle is

p(xt | z0:t) ≈ p̂(xt | z0:t) =
N∑

i=1

wi
tδxi

t
(xt),

where the weights {wi
t}Ni=1 are normalized to sum to one, and

where δx() denotes the Dirac delta distribution centered in x.
Particles and weights are propagated and updated according
to Bayes’ rule using the SSM defined by Eqs. (1) and (2).
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The simplest implementation is the bootstrap particle filter,
given for completeness in Algo. 1. More complex algorithms
have been proposed in the literature in order to overcome the
shortcomings of the bootstrap particle filter in practice. The
main is the impoverishment of the particle set. This refers to
the fact that without resampling most weights degenerate over
time, or with resampling (as done in the bootstrap particle
filter) only a few particles are retained after the resampling
step.

Algorithm 1 Bootstrap particle filter

1: Initialize {xi0, wi
0 = 1/N}Ni=1;

2: for t = 1, . . . , t0 do
3: for i = 1, . . . , N do ▷ Propagate
4: Sample x̃it ∼ p(xt | xit−1);
5: Compute w̃i

t = wi
t−1p(zt | x̃it);

6: end for
7: Normalize ŵi

t = w̃i
t/
∑

j w̃
j
t , i = 1, . . . , N ;

8: for i = 1, . . . , N do ▷ Resample
9: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

10: Set xit = x̃kt , w
i
t = 1/N ;

11: end for
12: end for

In this form, the particle filter assumes the model parameter
θ to be known and fixed. Therefore, it cannot be directly ap-
plied to prognostics application, as the parameter values are
typically specific to each individual device. Missing mea-
surements can be treated on the other hand trivially: If the
measurement zt is unavailable, we marginalize Eq. (2) with
respect to zt and replace p(zt | x̃it) by

∫
p(z′t | x̃it)dz′t = 1.

In practice, this corresponds to not updating the weights (line
5 of Algorithm 1) and only sampling x̃it from the distribution
p(xt | xit−1). Resampling is not required in this case, but
could still be done, even though it might lead to unnecessary
impoverishment of the particles.

3. STATE AND PARAMETER ESTIMATION WITH PARTI-
CLE FILTERS

Estimating sequentially both state and parameter of a model
is a difficult problem. Several methods have been proposed in
the literature, see, e.g., (Doucet et al., 2000, 2001). Many of
these do not treat the parameter estimation sequentially, and
are therefore not further discussed here. In this section, we
only describe three of the most common approaches in the
prognostics literature, see, e.g., (Si et al., 2011; Jouin et al.,
2016).

3.1. Parameter-augmented bootstrap particle filter

The straightforward approach to state and parameter estima-
tion consists in augmenting the state-space xt with the pa-
rameter θ, i.e., defining a new state space Xt = (xt, θt). The

underlying dynamics for xt is unchanged and is defined by
Eq. (3). The parameter θ is assumed to not evolve in time,
i.e., it follows the trivial dynamics

θt = θt−1,

and θ0 = θ. Together with the prior distribution p(θ0) = p(θ)
this is equivalent to the solution of the full problem. The
augmented state of the resulting SSM can then be estimated
using the bootstrap particle filter. The resulting method is
given in Algo. 2.

With this method, the parameter θt does not evolve over time.
Hence, the set of possible values for it is fixed throughout
the algorithm, and is equal to the initial samples θi0 from the
prior distribution p(θ). Due to resampling, only a few dis-
tinct values of θ survive after some time (in the worst case
only one). Therefore, this algorithm leads in many cases to a
strong overconfidence on the parameter uncertainty, and pos-
sibly to a wrong estimate of its value. Despite this shortcom-
ing, this approach has been proposed in (An, Choi, & Kim,
2013), even if only in a tutorial setting.

Algorithm 2 Parameter-augmented bootstrap particle filter

1: Initialize {xi0, θi0, wi
0 = 1/N}Ni=1;

2: for t = 1, . . . , t0 do ▷ Propagate
3: for i = 1, . . . , N do
4: Set θ̃it = θit−1

5: Sample x̃it ∼ p(xt | xit−1; θ̃
i
t);

6: Compute w̃i
t = wi

t−1p(zt | x̃it; θ̃it);
7: end for
8: Normalize ŵi

t = w̃i
t/
∑

j w̃
j
t , i = 1, . . . , N ;

9: for i = 1, . . . , N do ▷ Resample
10: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

11: Set xit = x̃kt , θit = θ̃kt , wi
t = 1/N ;

12: end for
13: end for

3.2. Diffusive bootstrap particle filter

The main limitation of the parameter-augmented bootstrap
particle filter is the impossibility to create new parameter val-
ues θit. This can be overcome by increasing their variability
over time and in particular by exploring values close to the
particles that survive the resampling. Since we only have in-
formation regarding the likelihood function or posterior dis-
tribution of values of state and parameter represented by some
particles, some approximation is needed.

The most popular approach to create variability in the param-
eter consists in adding a stochastic dynamic term to its time
evolution. In almost all practical cases, this dynamics takes
the form of a Brownian motion, i.e.,

θt ∼ N (θt−1,Σθ), (5)
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where Σθ is a suitable covariance matrix.

Whereas the motivation for the stochastic evolution of the pa-
rameter θ is purely to improve the particle filter method, it
is often proposed, that it attempts to capture the mismatch
between the model and the real underlying process, even if
the parameter is not – in principle – changing in time. De-
spite this mismatch being potentially a valid point, using a
stochastic dynamics for this in prognostics is difficult to jus-
tify. Indeed, the variation of the degradation variable is often
rather limited and deviations will tend to be rather system-
atic than random. Another case made is that it allows to cap-
ture change-points of the parameter, where the time evolution
changes abruptly, e.g., due to a transition to a faulty state.
Such transitions are often handled better using dedicated ap-
proaches. In addition, the diffusive nature of Eq. (5) leads to
past measurements being considered progressively less by the
filter, leading to a larger parameter and prediction uncertainty.

On a more practical side, introducing the covariance matrix
Σθ adds hyperparameters to the algorithm that are often diffi-
cult to tune. Unfortunately, the performance of the algorithm
relies strongly on a good choice of them. If the covariance has
too small elements the parameter is essentially static and the
method has the same issues as in Sec. 3.1. Conversely, if Σθ

has too large elements, the dynamics introduces overdisper-
sion to the parameter. This second case is particularly con-
cerning in case of missing measurements and especially in
the prediction phase. Indeed, without measurements, which
are the driving force constraining the parameter, the diffusive
dynamics leads to a strong and purely artificial increase in un-
certainty. The calculation of the RUL is most susceptible to
this, as a prediction over a long time horizon is made. A hy-
brid approach is often employed to overcome this difficulty:
The parameter is evolved using the stochastic model for the
estimation phase, but is then frozen for the prediction phase.
This inconsistency is listed as one of the open questions in
(Jouin et al., 2016).

We propose here the introduction of an improved parameter
evolution by using a time dependent covariance matrix Σθ in
order to mitigate this issue. The time dependence is defined in
the following way: the parameter is only updated when mea-
surements are done, otherwise it remains unchanged. This
corresponds formally to setting Σθ = 0 for time steps with-
out measurements. With this practical approach, we do not
incur an artificial but unneeded overdispersion and still retain
the better exploration of the parameter space with respect to
the method of Sec. 3.1. We also remove the inconsistency
in calculating the evolution in the parameter estimation and
prediction phase. Despite these improvements, the diffusive
bootstrap filter still strongly relies on choosing appropriately
the covariance matrix to avoid either the impoverishment of
the particles, or the loss of information carried by past mea-
surements.

The diffusive bootstrap particle filter algorithm including the
improvement for missing measurements is shown in Algo. 3.

Algorithm 3 Diffusive augmented bootstrap particle filter in-
cluding treating of missing measurements

1: Initialize {xi0, θi0, wi
0 = 1/N}Ni=1;

2: for t = 1, . . . , t0 do ▷ Propagate
3: for i = 1, . . . , N do
4: if zt available then
5: Sample θ̃it ∼ p(θt|θit−1,Σθ);
6: else
7: Set θ̃it = θit−1;
8: end if
9: Sample x̃it ∼ p(xt | xit−1; θ̃

i
t);

10: Compute w̃i
t = wi

t−1p(zt | x̃it; θ̃it);
11: end for
12: Normalize ŵi

t = w̃i
t/
∑

j w̃
j
t , i = 1, . . . , N ;

13: for i = 1, . . . , N do ▷ Resample
14: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

15: Set xit = x̃kt , θit = θ̃kt , wi
t = 1/N ;

16: end for
17: end for

3.3. Liu–West filter

A popular approach trying to avoid the artificial overdisper-
sion of the parameter due to the stochastic evolution of the
parameter has been proposed in (Liu & West, 2001), referred
to here as “Liu–West filter”. Their approach has been widely
used due to two advantages: it is independent of the specific
model and it is easy to implement. Examples of its use in
prognostics application are e.g.(Hu, Baraldi, Di Maio, & Zio,
2015; Peng et al., 2018).

The Liu–West filter, similarly to the diffusive particle filter
of Sec. 3.2, evolves the parameter in time with a stochastic
process. Unlike it, the process is tuned such that the mean
and covariance of the marginal parameter distribution stays
invariant during the parameter update process. The overdis-
persion of the parameter estimation is therefore kept under
control, avoiding the main drawback of the diffusive boot-
strap filter.

At each time t, the parameter value for the ith particle is sam-
pled from the modified stochastic process

θit ∼ N(mi
t,Σt),

with suitable values for mi
t and Σt. To calculate these, the

(weighted) meanmt and covariance Σm,t of the marginal dis-
tribution over all θit−1 are determined. These are then used to
get

mi
t = aθit−1 + (1− a)mt (6)

and
Σt = (1− a2)Σm,t, (7)
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In Eqs. (6) and (7), the scalar tuning parameter a ∈ [0, 1] is
used in both mi

t and Σt such that the marginal distribution
of the newly sampled {θit}Ni=1 have the same mean mt and
covariance Σt as before. In this way the overdispersion from
the sampling of θit is kept at a minimum.

Two limiting cases can be seen: If the coefficient a → 1
the parameter values of the particles do not move over a time
step, the Liu–West filter approaches the static particle filter.
Conversely if a→ 0 all particles have parameters drawn from
a common normal distribution, independent of the individual
parameter values of the particles at the previous time step.
The parameter a is often chosen very close to a → 1 (e.g.
0.995) or even adapted over time to cope with the improved
knowledge of the parameter. The method was inspired by the
analogy of the marginal parameter distribution in the diffusive
update step with a kernel density estimation or a Gaussian
mixture model centered around the mi

t.

A possible implementation of the Liu–West filter is given in
Algo. 4; the main difference is the modified calculation of the
update of the parameter value of the particles. We give here
only the simplest implementation, whereas in (Liu & West,
2001) some additional importance sampling steps are used in
addition.

Algorithm 4 The Liu–West particle filter

1: Initialize {xi0, θi0, wi
0 = 1/N}Ni=1;

2: for t = 1, . . . , T do ▷ Propagate
3: for i = 1, . . . , N do
4: Determine mean mt and variance Σt of

the marginal of the θit−1;
5: Determine mi

t = aθit−1 + (1− a)mt;
6: Sample θ̃it ∼ N (mi

t, (1− a2)Σt);
7: Sample x̃it ∼ p(xt|xit−1, θ̃

i
t);

8: Evaluate the corresponding weights
wi

t ∝ wi
t−1p(zt|xit, θ̃it);

9: end for
10: for i = 1, . . . , N do ▷ Resample
11: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

12: Set xit = x̃kt , θit = θ̃kt , wi
t = 1/N ;

13: end for
14: end for

The Liu–West filter often works in practice, but requires tun-
ing of the hyperparameter a, which might be difficult to set to
a reasonable value in a real application. A wrong value of a
can lead, as before to an incorrect prediction.

Dealing with missing measurements can be done in two pos-
sible ways: The first one replaces p(zt | · · · ) by one and
evolves the parameter θit in the same way as for time steps
with measurements. The second one follows the proposal
above and keeps the parameter fixed for that time step. This

corresponds formally to choosing a = 1 for them.

4. STORVIK FILTER

In (Storvik, 2002; Johannes & Polson, 2006; Erol, Li, Ram-
sundar, & Russell, 2013) the authors propose a class of parti-
cle filter approaches that are exact with respect to the param-
eter distribution. Even though they slightly differ in their spe-
cific implementation, they are based on the same basic con-
cept and we refer to them together as “Storvik filter”.

The main problem with parameter estimation in SSMs, and
therefore also in SMC, is the increasing number of measure-
ment data and hidden states, which makes evolving the pa-
rameter distribution progressively harder over time. The Stor-
vik filter assumes the existence of a finite-dimensional suf-
ficient statistic s(x, z) for the distribution of the parameter
given the states x0:t and the measurements z0:t. Denoting
st = s(x0:t, z0:t), sufficiency means that

p(θ | x0:t, z0:t) = p(θ | st).

The value of st carries all the relevant information contained
in the history of x0:t and z0:t. In addition, the Storvik filter
requires a recursive rule

st = S(st−1, xt, zt).

to update the sufficient statistic with each new state and mea-
surement.

The existence of a sufficient statistic with a finite and fixed
dimension independent of t is not guaranteed. The Fisher–
Pitman–Koopman–Darmois theorem states that such a finite
sufficient statistic st exists if and only if the distribution of
θ belongs to the exponential family, see e.g. (Barankin &
Maitra, 1963). This is often the case and thus guarantees a
wide applicability of the Storvik filter. Especially many mod-
els use normal distributed process noise terms together with a
linear dependency of the parameter, which can be addressed
with this approach as discussed in (Erol et al., 2013). Exten-
sions to distributions that are not members of the exponential
family can be found in (Johannes & Polson, 2006), where
the authors consider mixtures of exponential families for this
case. Finally, in (Joyce & Marjoram, 2008) the authors dis-
cuss the determination of approximately sufficient statistics
from data, if exact sufficient statistics are not available.

The Storvik filter is given in Algo. 5. It shares a number
of similarities with the already discussed filters in that the
parameter is evolved as well in each time step. The particles
contain in addition to xit and θit also sit, which are used to
sample new values of θit ∼ p(θit | sit).

5. STORVIK FILTER WITH MISSING MEASUREMENTS

Incorporating missing measurements into the Storvik filter is
not straightforward, as was in the other cases, due to the re-

5

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 690



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Algorithm 5 The Storvik particle filter

1: Initialize {xi0}Ni=1;
2: Compute {si0 = s(xi0, z0)}Ni=1;
3: for t = 1, . . . , T do ▷ Propagate
4: for i = 1, . . . , N do
5: Sample θit ∼ p(θt | sit−1);
6: Sample x̃it ∼ p(xt | xt−1, θ

i
t);

7: Evaluate w̃i
t = wi

t−1p(zt | x̃it, θit);
8: Compute s̃it = S(sit−1, x̃

i
t, zt);

9: end for
10: Normalize ŵi

t = w̃i
t/
∑

j w̃
j
t , i = 1, . . . , N ;

11: for i = 1, . . . , N do ▷ Resample
12: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

13: Set xit = x̃kt , sit = s̃kt , wi
t = 1/N ;

14: end for
15: end for

quired update of the sufficient statistic in each step. We have
identified two possible approaches:

1. Resampling the parameter at each step, despite missing
measurements. We denote this choice by “U” as in “Up-
dating”.

2. Freezing the parameter to the value at the last observed
time. We denote this choice by “F” as in “Frozen”.

The two approaches can be shown to result from splitting the
joint posterior distribution for the evolution of the state from
t+ 1 to t+ k without measurements into

p(xt+1:t+k, θ) = p(θ|st+k)p(xt+1:t+k),

showing that the sufficient statistic needs to be updated us-
ing all xt+1:t+k to get the correct distribution of θ at the end.
The distribution p(xt+1:t+k) on the other hand can be decom-
posed in two different ways, either as

p(xt+1:t+k) =

∫
p(xt+k|θ)p(xt+k−1|θ) . . .

p(xt+1|θ) p(θ|x1:t, z1:t)dθ

which corresponds to sampling one θ at the last time step
with a measurement and sampling all new values of x with
it, which is the ”F” approach. Alternatively one can write

p(xt+1:t+k) =

∫
p(xt+k|xt+k−1, θ)p(θ|st+k−1)dθ×

p(xt+1:t+k−1)

which corresponds to updating the sufficient statistic after
each step and sampling a new θ from it. This is the ”U”
approach. This shows that both approaches are identical in
principle, but could still be more or less efficient in applica-
tions.

A possible implementation of both approaches is given in Al-

gos. 6 and 7 for the ”U” and ”F” approach replacing lines 3
to 9 in Algo. 5, respectively. Please note the similarity of the
two approaches to the one previously discussed.

Algorithm 6 Storvik particle filter “U” for predictions

1: for i = 1, . . . , N do
2: Sample θit ∼ p(θt | sit−1);
3: Sample xit ∼ p(xt | xt−1, θ

i
t)

4: Set wi
t = wi

t−1

5: Compute sit = S(sit−1, x
i
t)

6: end for

Algorithm 7 Storvik particle filter “F” for predictions

1: Set θit = θit−1 for i = 1, . . . , N
2: for i = 1, . . . , N do
3: Sample xit ∼ p(xt | xt−1, θ

i
t)

4: Set wi
t = wi

t−1

5: Compute sit = S(sit−1, x
i
t)

6: end for

6. SIMULATION STUDY

We compare the performances of the four algorithms (para-
meter-augmented bootstrap particle filter, diffusive bootstrap
particle filter, Liu–West filter, and Storvik filter) when applied
to two simple models mimicking typical degradation dynam-
ics. In addition we use a MCMC implementation in order
to get the exact posterior distribution for all cases, using the
JAGS probabilistic programming language (Plummer, 2003).

6.1. The linear model

The simplest model is the one of a Brownian motion with
drift for xt

xt+1 ∼ N (xt + α, σx) (8)

together with a normal distributed measurement error

zt ∼ N (xt, σz) (9)

This model is also referred to in the literature as the Whitmore
model (Whitmore, 1995). For this study, we assume that only
α is unknown and that σx and σz are known, so that only α
and xt need to be determined. This model falls into the class
of having normal distributed process noise and being linear
in the parameter. Therefore the sufficient statistic is known to
be the mean and standard deviation of the distribution of the
parameter α.

The prior distributions are assumed to be given as

p(α) = N (α0, σα0
) (10)

and
p(x0) = N (z0, σx0) (11)

centered around the first measurement z0.
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To simulate the data set we have used x0 = 1000, α = −8.65,
σx = 1, and σz = 5. The prior distribution parameters are
α0 = α = −8.65, σα0

=
√
5 and σx0

= 10.

6.2. The stretched exponential or Weibull model

For many devices, e.g. for batteries or capacitors, the degra-
dation process accelerates over time. The Weibull function,
also known as stretched exponential, is often employed to
capture this. We use a model of the form

xt+1 ∼ N
(
xt − 3α

(
− ln

(xt
X

))1−1/3

xt, σx

)
,

which is chosen to follow approximately a Weibull function
with shape parameter 3, but in the form of a time-independent
stochastic process. The measurement model reads as before

zt ∼ N (xt, σz),

We assume the same prior distribution for α and x0 as in
Eqs. (10) and (11).

As in the linear model, the process noise is modeled as nor-
mal distributed and the dependency on the parameter is linear,
even if the evolution of xt is not. This makes the sufficient
statistic to be as before the mean and standard deviation of
the distribution for α.

For the simulation we have used initial condition x0 = 995,
maximum value X = 1000, σx = 1, σz = 5, and α = 1/80.
For the prior we use α0 = α = 1/80 and σα0

= 6 · 10−3 and
where σx0

= 1 to avoid sampling impossible values x0 ≥
X . Parameters were chosen, such that the two models are
comparable in terms of the degradation path.

For all tests we simulate 100 time steps with the measure-
ments thinned, such that only every 5th time step was recorded
to verify how efficiently the methods can treat missing mea-
surement. We also stopped the estimation phase at either time
horizon t0 = 30 or 75 and continued with the prediction part
only. The data set used, as well as the mean degradation curve
for the two models are shown in Fig. 1.

6.3. Results

Figure 2 demonstrates the issues that can affect the static and
the diffusive particle filters and the Liu–West filter. Measure-
ments are available until t0 = 75, after which only predic-
tions were done. Note that we selected hyperparameters in
order to exaggerate the issues. A more fine-tuned approach
would lead to better agreement with the MCMC results.

With respect to the MCMC based reference result, given in
Figure 2(d) we observe:

• Figures 2(a) and (b) demonstrate the underestimation and
overestimation of the parameter uncertainty when using
the static parameter-augmented particle filter and the dif-

Figure 1. The mean value for xt and the thinned measurement
data zt for the two models is shown.

(a) Parameter augmented filter (b) Diffusive filter

(c) Liu–West filter (d) MCMC

Figure 2. Parameter estimation for the Weibull model for the
three different particle filter: (a) static bootstrap, (b) diffusive,
and (c) Liu–West filter. (d) gives the reference results using
the MCMC approach. Mean values and uncertainty in terms
of two standard deviations are given.

fusive particle filter, respectively.
• Figure 2(c) demonstrates that also the Liu–West filter can

yield overdispersed results, even if overall less severe
than for the diffusive particle filter case.

In Fig. 3 we give the results for the two implementations (”F”
and ”U”) of the Storvik filter for missing measurements for
the linear model, in Fig. 4 for the Weibull model. In or-
der to focus on the performance of the two algorithm in the
prediction phase, we set the time horizon to t0 = 30. We
observe that both implementations of the Storvik filter for
missing measurements lead to results that are consistent with
the MCMC result, despite (or due to) the absence of tuning
hyperparameters. We also observe that the two implemen-
tations are practically indistinguishable, with the exception
of a slightly more unstable behavior of the U implementa-
tion, visible in the initial time period of the Weibull model in
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(a) Storvik filter using ”F”

(b) Storvik filter using ”U”

(c) MCMC

Figure 3. Parameter and state estimation of the linear model
with the Storvik filter: Results using the two different treat-
ments in case of missing data are compared using (a) the
Frozen and (b) the Update approach. Results are compared
with the reference result using the MCMC approach. On the
left the evolution of the parameter estimation, on the right the
difference between predicted and the true state is given. In
both cases the mean and the uncertainty in terms of two stan-
dard deviation is shown.

Fig. 4(b).

7. APPLICATION TO REAL DATA WITH BREAKER OPEN-
ING TIMES

In this section, we test the application of the Storvik filter
against real data from an application with circuit breakers. In
this case model misspecification is present and could under-
mine the applicability of the approach.

Circuit breakers are protection devices to interrupt short cir-
cuit currents occurring in an electric network. They are op-
erated by mechanical mechanisms whose malfunction is one
of dominant failure modes for them. The time required to
open or close the contacts is the commonly monitored prop-
erty. For instance, a reduction in a spring force or an increase
in friction leads to an increase of this time. Hence, tracking
it as a function of the number of operations enables to predict
the end-of-life of these devices.

The evolution of the time xt of the mechanical opening/clos-
ing operation is in general stochastic. Please note that t in this

(a) Storvik filter using ”F”

(b) Storvik filter using ”U”

(c) MCMC

Figure 4. Parameter estimation of the Weibull model with
the Storvik filter: Results using the two different treatments
in case of missing data are compared using (a) the Frozen
and (b) the Update approach. Results are compared with the
reference result using the MCMC approach. On the left the
evolution of the parameter estimation is given showing the
mean and the uncertainty in terms of two standard deviation,
whereas on the right we give the full distribution for the final
time step.

case typically refers to the number of operations performed
instead of the time in operation. We describe it by the linear
model as given in Eq. (8). The main issue with the data is that
the measurement error is not following a normal distribution
as assumed in Eq. (9). In fact, because of the signal process-
ing performed during acquisition, the data is strongly quan-
tized, as can be seen in Fig. 5(a). This was already discussed
and analysed in (Hencken, 2021), which concluded that as-
suming normal distributed error gives reasonable results in a
full analysis.

As circuit breaker often perform a larger number of opera-
tions, the use of a sequential approach will be an advantage in
practice. We therefore explore here whether a particle based
approach based on the Storvik filter is suitable. The model
features three unknown parameters: the drift α and the two
standard deviation for the process σx and the measurement
σz , which leads to a more complex sufficient statistic. Fol-
lowing the usual normal-inverse-gamma model, the sufficient
statistic consists of six variables, which are mean and stan-
dard deviation of the normal distribution of the drift α and
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(a) Storvik filter (b) MCMC

Figure 5. Results of the application of the Storvik filter to the
estimation of the degradation process of opening times xt of
a circuit breaker as a function of the number of oerations t.
(a) shows the original data together with the state estimations
and the prediction of the future evolution for the Storvik filter
using the “U” method, (b) the same but for the MCMC refer-
ence approach.

the location and scale parameter of the inverse Gamma distri-
bution for σx and similar for σz . For more details, we refer to
(Storvik, 2002), where the sufficient statistic, as well as their
update rules, are given.

As all measurements are available, we focus on a comparison
of the basic Storvik filter without missing measurements with
the exact result as given by the MCMC approach. The results
of the state estimation and the expected future evolution of
the two models are shown in Fig. 5. The Storvik filter is able
to estimate the states quite similar to the ones found in the
reference approach and in addition is able to capture the fu-
ture evolution. Some slight deviations are visible, especially
of the MCMC results showing a slightly larger uncertainty
at the end of the measurements. But this demonstrates in a
first step the possible application of the Storvik filter in real
applications.

8. CONCLUSIONS AND OUTLOOK

Model-based prognostics requires joint state and parameter
estimation. A sequential approach is most suitable to avoid
increase in computational complexity over time. Several ap-
proaches involving particle filters and their potential issues
have been discussed. We have focused also on the need of
a robust treatment of time steps with missing measurements
either due to irregular data acquisition or for the predictions
needed for the RUL calculation. We have explored the use
of the Storvik filter for prognostics application as an exact
parameter estimation approach. We have shown that it can
be naturally extended to incorporate missing measurements
in two ways, which are similar to the ones discussed for the
other particle filter approaches. Its main limitation is that it
is restricted to problems allowing for the existence of a suffi-
cient statistic. Simulations using two simple models showed
the robustness and reliability of the Storvik filter, whereas we
demonstrated as well, that other approaches can lead to er-
roneous results. We have also applied it to one real world
examples, in order to test its applicability in a case, where the

assumed model is not valid.

Prognostics using particle filters is an active area of research
and development of real applications. The promising results
with the Storvik filter should be further explored and its appli-
cability to more complex problems, including higher dimen-
sional state space and parameter vectors, but also to mod-
els beyond the restricted class studied here, should be ex-
plored. Finding suitable sufficient statistics in these more
general models, even outside the exponential family, is an-
other line of research to be undertaken.
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