Enhancing Data-driven Vibration-based Machinery Fault Diagnosis Generalization Under Varied Conditions by Removing Domain-Specific Information Utilizing Sparse Representation

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 27, 2024
David Latil Raymond HOUE NGOUNA Kamal MEDJAHER Stéphane Lhuisset

Abstract

This paper introduces a novel approach to machinery fault diagnosis, addressing the challenge of domain generalization in diverse industrial environments. Traditional methods often struggle with domain shift and the scarcity of balanced, la- beled datasets, limiting their effectiveness across varied oper- ational conditions. The proposed method leverages the abun- dance of healthy machinery signals as a reference for extract- ing domain-specific information. By doing so, it removes the domain-related variances from the observation signals, focus- ing on the intrinsic characteristics of faults. The methodol- ogy is validated with a case study, demonstrating enhanced diagnosis accuracy and generalization capabilities in unseen domains. This research contributes to the field of vibration- based intelligent fault diagnosis by providing a robust solu- tion to a long-standing problem in machine condition moni- toring.

How to Cite

Latil, D., HOUE NGOUNA, R., MEDJAHER, K., & Lhuisset, S. (2024). Enhancing Data-driven Vibration-based Machinery Fault Diagnosis Generalization Under Varied Conditions by Removing Domain-Specific Information Utilizing Sparse Representation. PHM Society European Conference, 8(1), 7. https://doi.org/10.36001/phme.2024.v8i1.3987
Abstract 144 | PDF Downloads 153

##plugins.themes.bootstrap3.article.details##

Keywords

rotating machines, intelligent fault diagnosis, vibration analysis, domain generalization

References
Abboud, D., Baudin, S., Antoni, J., Re ́mond, D., Eltabach, M., & Sauvage, O. (2016, June). The spectral analysis of cyclo-non-stationary signals. Mechanical Systems and Signal Processing, 75, 280–300. doi: 10.1016/j.ymssp.2015.09.034
Antoni, J., Bonnardot, F., Raad, A., & El Badaoui, M. (2004, November). Cyclostationary modelling of ro- tating machine vibration signals. Mechanical Sys- tems and Signal Processing, 18(6), 1285–1314. doi: 10.1016/S0888-3270(03)00088-8
Azari, M. S., Flammini, F., Santini, S., & Caporuscio, M. (2023). A Systematic Literature Review on Transfer Learning for Predictive Maintenance in Industry 4.0. IEEE Access, 11, 12887–12910. doi: 10.1109/AC- CESS.2023.3239784
Borghesani, P., Herwig, N., Antoni, J., & Wang, W. (2023, December). A Fourier-based explanation of 1D-CNNs for machine condition monitoring applications. Me- chanical Systems and Signal Processing, 205, 110865. doi: 10.1016/j.ymssp.2023.110865
Cai, G., Selesnick, I. W., Wang, S., Dai, W., & Zhu, Z. (2018, October). Sparsity-enhanced signal decomposition via generalized minimax-concave penalty for gearbox fault diagnosis. Journal of Sound and Vibration, 432, 213– 234. doi: 10.1016/j.jsv.2018.06.037
Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998, January). Atomic Decomposition by Basis Pur- suit. SIAM J. Sci. Comput., 20(1), 33–61. doi: 10.1137/S1064827596304010
Feng, Z., Zhou, Y., Zuo, M. J., Chu, F., & Chen, X. (2017, June). Atomic decomposition and sparse representa- tion for complex signal analysis in machinery fault di- agnosis: A review with examples. Measurement, 103, 106–132. doi: 10.1016/j.measurement.2017.02.031
Iatsenko, D., McClintock, P., & Stefanovska, A. (2016, August). Extraction of instantaneous frequencies from ridges in time–frequency representations of sig- nals. Signal Processing, 125, 290–303. doi: 10.1016/j.sigpro.2016.01.024
Jia, S., Li, Y., Wang, X., Sun, D., & Deng, Z. (2023, June). Deep causal factorization network: A novel domain generalization method for cross-machine bearing fault diagnosis. Mechanical Systems and Signal Processing, 192, 110228. doi: 10.1016/j.ymssp.2023.110228
Kim, I., Wook Kim, S., Kim, J., Huh, H., Jeong, I., Choi, T., . . . Lee, S. (2024, May). Single do- main generalizable and physically interpretable bear- ing fault diagnosis for unseen working conditions. Ex- pert Systems with Applications, 241, 122455. doi: 10.1016/j.eswa.2023.122455
Liu, R., Yang, B., Zio, E., & Chen, X. (2018, Au- gust). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Sys- tems and Signal Processing, 108, 33–47. doi:
10.1016/j.ymssp.2018.02.016
Mallat, S., & Zhang, Z. (1993, December). Match-
ing pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12). doi: 10.1109/78.258082
Qin, Y. (2018, March). A New Family of Model-Based Impulsive Wavelets and Their Sparse Representation for Rolling Bearing Fault Diagnosis. IEEE Transac- tions on Industrial Electronics, 65(3), 2716–2726. doi: 10.1109/TIE.2017.2736510
Randall, R. (2010, 12). Vibration-based condition moni- toring: Industrial, aerospace and automotive applica- tions. Vibration-based Condition Monitoring: Indus- trial, Aerospace and Automotive Applications. doi: 10.1002/9780470977668
Selesnick, I. (2017, September).
ization via Convex Analysis.
on Signal Processing, 65(17), 4481–4494. doi: 10.1109/TSP.2017.2711501
Shi, Y., Deng, A., Deng, M., Li, J., Xu, M., Zhang, S., . . . Xu, S. (2023, June). Domain Transferability- Based Deep Domain Generalization Method Towards Actual Fault Diagnosis Scenarios. IEEE Transactions on Industrial Informatics, 19(6), 7355–7366. doi: 10.1109/TII.2022.3210555
Wang, R., Huang, W., Lu, Y., Zhang, X., Wang, J., Ding, C., & Shen, C. (2023, October). A novel domain gener- alization network with multidomain specific auxiliary classifiers for machinery fault diagnosis under unseen working conditions. Reliability Engineering & System Safety, 238, 109463. doi: 10.1016/j.ress.2023.109463
Zhang, D., & Feng, Z. (2022, January). Enhance- ment of time-frequency post-processing readability for nonstationary signal analysis of rotating machin- ery: Principle and validation. Mechanical Sys- tems and Signal Processing, 163, 108145. doi: 10.1016/j.ymssp.2021.108145
Zhao, C., & Shen, W. (2023, April). Mutual-assistance semisupervised domain generalization network for in- telligent fault diagnosis under unseen working condi- tions. Mechanical Systems and Signal Processing, 189, 110074. doi: 10.1016/j.ymssp.2022.110074
Zheng, H., Yang, Y., Yin, J., Li, Y., Wang, R., & Xu, M. (2021). Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing. IEEE Transactions on Instrumentation and Measurement, 70, 1–11. doi: 10.1109/TIM.2020.3016068
Section
Technical Papers