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ABSTRACT

This paper introduces a novel approach to machinery fault
diagnosis, addressing the challenge of domain generalization
in diverse industrial environments. Traditional methods often
struggle with domain shift and the scarcity of balanced, la-
beled datasets, limiting their effectiveness across varied oper-
ational conditions. The proposed method leverages the abun-
dance of healthy machinery signals as a reference for extract-
ing domain-specific information. By doing so, it removes the
domain-related variances from the observation signals, focus-
ing on the intrinsic characteristics of faults. The methodol-
ogy is validated with a case study, demonstrating enhanced
diagnosis accuracy and generalization capabilities in unseen
domains. This research contributes to the field of vibration-
based intelligent fault diagnosis by providing a robust solu-
tion to a long-standing problem in machine condition moni-
toring.

1. INTRODUCTION

In the domain of industrial maintenance, ensuring the reliabil-
ity and efficiency of rotating machinery is a central challenge.
Among the various strategies employed, vibration-based fault
diagnosis stands out as a proven technique for preemptive de-
tection and mitigation of potential failures (Randall, 2010).

The advent of the Industrial Internet of Things (IloT) and
the proliferation of sensor technologies have led to an un-
precedented availability of machinery data. This, in turn,
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has facilitated the application of intelligent diagnosis meth-
ods (Liu, Yang, Zio, & Chen, 2018) which showed impres-
sive performance. Despite this, the use of these methods in
real industrial scenarios has been proven difficult, mainly be-
cause it relies on a central assumption which is often hard
to meet. Indeed, most Machine Learning (ML), including
Deep Learning (DL) diagnosis techniques learn a represen-
tation of the training data in order to generalize to unseen
examples. The unseen examples, also referred to as test data,
must then follow the same distribution as the training data
to ensure effective generalization by the model. The unpre-
dictability of industrial environments and the varying work-
ing conditions of rotating machines significantly challenge
this assumption. This results in overfitting on the working
conditions the model has been trained on, and leads to a dra-
matic decrease in performance when conditions change.

Transfer learning has emerged as a popular strategy to address
this challenge, aiming to leverage knowledge from one do-
main to improve performance in another. Specifically, meth-
ods employing distance metrics to bridge the gap between
source and target domains have shown promise. However,
these approaches typically assume availability of the target
domain data during training, a scenario often impractical in
the field. (Azari, Flammini, Santini, & Caporuscio, 2023).
Indeed, despite the wide availability of surveillance data pro-
vided by IIoT sensors, the vast majority of available data pre-
dominantly reflects healthy working conditions, as faults are
infrequent.

Domain generalization is then a more fitting problem for-
mulation for situations where the target domain remains
unknown during the model training phase. Unlike domain
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adaptation, domain generalization aims to produce models
which generalize well to domains unseen during training.
For instance, in (Zhao & Shen, 2023) the authors proposed a
mutual-assistance network for semi-supervised domain gen-
eralization, while in (Shi et al., 2023) a dynamic weighting
strategy and a batch spectral penalization regularization term
was employed to tackle the domain generalization problem.
In (Jia, Li, Wang, Sun, & Deng, 2023) a deep causal fac-
torization network is used, taking advantage of the causal
properties in bearing signal models. The authors of (Zheng
et al.,, 2021) combined apriori expert knowledge on vibra-
tion analysis and a deep neural network to generalize to un-
seen operating conditions. In (Wang et al., 2023) the au-
thors used domain-specific discriminators to explicitly re-
move domain-specific information from the signals, creating
domain-invariant representation, yielding to better general-
ization to unseen working conditions. However, the current
landscape of domain generalization solutions is primarily
characterized by complex deep learning architectures. Al-
though effective, these architectures tend to obscure the in-
terpretative transparency of these models, thus contributing
to the ’black box’ phenomenon often cited as a major pit-
fall of state-of-the-art models. Consequently, recent works
such as (Kim et al., 2024) proposed an explainable diagnosis
technique for single-domain generalization tasks using a pri-
ori knowledge to produce domain-invariant representations,
showing increased performance on unseen target domains.

By tackling the domain shift challenge, our research intro-
duces a novel preprocessing technique tailored to address the
domain shift problem and the challenges induced by non-
stationary vibration signals. This technique leverages the
abundance of healthy signal data as a reference for identi-
fying domain-specific information. We operate under the
assumption that healthy signals contain such domain-specific
information, which can impede the generalization capabilities
of the models.

This approach aims to systematically eliminate domain-
specific characteristics from the diagnosis data using ad-
vanced signal processing techniques, thereby isolating the
intrinsic characteristics of faults. By focusing on the features
that are truly indicative of machinery health, irrespective of
operational conditions, our method proposes a step towards
achieving domain-agnostic fault diagnosis. This approach al-
lows us to benefit from the excellent performance state-of-the
art intelligent models without increasing their complexity to
achieve cross-domain fault diagnosis tasks.

The contributions of this paper are as follows:

1. A sparse representation-based signal processing tech-
nique is proposed to decompose the non-stationary noisy
signals into their relevant components

2. Decomposed reference healthy signals are used to re-
move domain-specific information from the observation

- : . N
Domain Adaptation Domain Generalization
Train Test Train Test
Single-Domain Generalization Considered scenario
Train Test Train Test
. J

B Labelled healthy sample
@ Labelled faulty sample (fault 1)
A Labelled faulty sample (fault 2)

@ Unlabelled healthy sample
@ Unlabelled faulty sample (fault 1)
A Unlabelled faulty sample (fault 2)

Figure 1. Generalization paradigms

signals

3. The domain-invariant signals from a source domain are
used train a simple classification model. Preprocessed
signals from target domains are used to validate the
generalization improvements on domains unseen during
training.

The rest of this paper is organized as follows: in section 2 the
method for domain-specific information removal is exposed,
in section 3 an experimental setup and protocol is proposed
to validate said method, and in section 4 the results are pre-
sented.

2. BACKGROUND
2.1. Domain generalization

Let us consider a rotating machine having N different work-
ing conditions, which translate into /N different domains
noted as D' = {(z%,y})}L,, where (z;,¥;) is the data-
label pair for the jth sample in the ith domain. Let us also
consider the situation where the label space is shared across
domains, but only one domain is fully labelled and accessi-
ble during training, while in all others only healthy samples
are known as such and are unseen until testing. This con-
stitutes a realistic data availability scenario, where healthy
data is abundant but fault data is scarce and usually represent
a small subset of possible working conditions. The differ-
ences between domain adaptation, domain generalization,
single-domain generalization and the Considered scenario
are illustrated in Figure 1.
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In this single-domain generalization scenario, the goal is to
train a classifier considering the limited data availability and
then demonstrate the generalization capability on unseen do-
mains.

2.2. Vibration signals under time-varying working condi-
tions

Rotating machines operating under varying working condi-
tions not only cause the domain shift problem. Their vi-
bration signals also contain specific challenges which makes
them hard to process.

Vibration signals generated by rotating machines operating
under constant or almost-constant working conditions can be
described using Eq. 1.

x(t) = d(t) + r(t) + n(t), €]

where d(t), r(t) and n(t) refer to deterministic, random and
background noise contributions respectively. Under constant
operating conditions, we can formulate several assumptions
on the nature of these contributions. Deterministic contri-
butions are almost-periodic as they are phase-locked to the
shaft angle, and the random part is often described as cyclo-
stationary (Antoni, Bonnardot, Raad, & El Badaoui, 2004),
while background noise is often assumed to be Gaussian
white noise coming from sensor and environmental noise.

Under varying operating conditions however, significant changes

occur in the vibration signals of rotating machines which sig-
nificantly challenge the assumptions previously made. For in-
stance, when the rotating speed of the machine varies in time,
the deterministic contributions are no longer periodic, while
cyclostationary contributions become cyclo-non-stationary
(Abboud et al., 2016). This emphasizes the enhancements
outlined in this study, which will be discussed in the follow-
ing section.

3. PROPOSED METHOD

A preprocessing technique aiming to reduce the effects of
domain shift induced by varying working conditions is pro-
posed. The preprocessing technique is composed of two main
tasks: the vibration signals must first be decomposed into
their relevant parts, then the decompositions from reference
signals are used to identify and remove domain-specific infor-
mation from the signals in each domain. An overview schema
of the method is illustrated in Figure 2.

3.1. Decomposition of vibration signals based on Sparse
Representation

Many signal processing techniques have been proposed over
the years to accurately handle vibration signals produced by
rotating machines operating under time-varying working con-
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ditions. Considering the shortcomings of classical frequency-
domain techniques, methods such as time-frequency analy-
sis are often a suitable tool to handle these signals (Zhang &
Feng, 2022). However each time-frequency has its own draw-
backs, and choosing the right technique is often difficult. In
this study, the Sparse Representation (SR) (Feng, Zhou, Zuo,
Chu, & Chen, 2017) framework is adopted to decompose the
vibration signals using a redundant basis.

Considering the morphological specificities of the different
contributions present in vibration signals, SR allows not to
be limited by the choice of a single basis, which might not be
able to accurately represent all types of contributions. Instead
a union of basis can be used, with the assumption that a more
efficient and sparse representation can be achieved.

This union of basis is referred to as a dictionary, and each el-
ement of the dictionary is an atom. Several dictionaries have
been proposed over the years, for instance the author of (Qin,
2018) used an impulse wavelet along with Fourier atoms to
denoise bearing fault signals, while in (Cai, Selesnick, Wang,
Dai, & Zhu, 2018) the authors used a union of a Discrete
Cosine and a Short-time Fourier basis to diagnose faults in a
gearbox.

These analytic dictionaries are very useful to identify compo-
nents whose morphological characteristics, such as the natu-
ral frequency of the system, are known a priori. However in
most cases there’s a very limited amount of prior information
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available on industrial machines. Therefore, this study adopts
a minimalistic dictionary approach, accommodating both de-
terministic and stochastic elements in vibration signals. This
is achieved through integrating Fourier and Unit bases, repre-
senting these contributions respectively.

SR can be achieved through either greedy methods like

Matching Pursuit (MP) (Mallat & Zhang, 1993), or optimization-

based techniques such as basis pursuit (BP) (Chen, Donoho,
& Saunders, 1998). In the latter, the optimization objective is
to minimize the reconstruction error, regularized by the norm
of the sparse vector, expressed in Eq. 2.

min {F(m) — Ly - Al + Aw@c)}, @

where y € RV 1 is the input signal of size N, A € RN*K is
the dictionary where K > N, x is the sparse vector, )\ is the
regularization parameter and v is a sparsity-inducing penalty.

In this study, the Generalized Minimax Concave (GMC)
penalty is used due to its ability to overcome the ampli-
tude underestimation issue associated with the [; penalty,
while still preserving the convexity of the overall optimiza-
tion objective, as highlighted by (Selesnick, 2017). The GMC
penalty, defined in Eq. 3, serves as a key component in our
approach.

vamc(@) = [lally - min {[v] + S5 A@ - )3}, ©)

where v > 0 controls the convexity of the GMC penalty,
which is set at v = 0.8 as advised in (Selesnick, 2017). The
A term is the regularization parameter. In this study, we set
empirically A = 1.4.

There are many algorithms designed to find the minimizer to
this convex optimization problem. In this work we use the
forward-backward splitting algorithm.

An example of decomposition using the proposed method is
illustrated in Figure 3 where a signal containing a rolling ele-
ment bearing fault is decomposed using Eq. 2. The different
contributions from the Fourier and Unit basis are represented
in blue and red respectively.

3.2. Removal of domain-specific components from the ob-
servation signals

After windowing and decomposing the signal using the pro-
posed SR method, decompositions of healthy signals from
each available domain are utilized as reference. It is assumed
that these signals contain domain-specific characteristics that
do not carry relevant diagnosis information and may con-
tribute to the domain-shift issue. In every domain, atoms
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Figure 3. Decomposition of a signal containing an Inner Ring
fault (a), into its deterministic contribution (blue in (b)) and
random contributions (red in (b).

which are used to represent the reference signals are system-
atically removed from observation signals in order to produce
domain-invariant signals, as illustrated in Figure 2.

Additionally, the effects of varying speeds must be consid-
ered. Order Tracking is often used to resample the signal
from the time domain to the order domain. However it re-
quires information on the instantaneous rotating speed of the
machine, which is often not available in industrial scenarios.

Consequently, we use the Fourier atoms from the sparse de-
compositions in order to estimate the instantaneous rotating
speed without the need for additional hardware using the
ridge tracking technique proposed in (Iatsenko, McClintock,
& Stefanovska, 2016). The signal is then resampled from the
time domain to the order domain, so that all domains share
the same rotating speed reference.

4. EXPERIMENTAL VERIFICATION

In this study, the Machinery Fault Simulator from Spec-
traQuest was used as test rig (pictured in Figure 3). It consists
of an 3-phase 1HP motor, a main shaft with two Rexnord
ER12K bearings and a gearbox linked to the main shaft by a
double groove rubber belt. Three different couplings between
the motor and the shaft are available (rigid, jaw, beam). A
magnetic brake on the gearbox can be used to manually vary
the load applied on the gearbox. The motor’s speed can vary
from 0 to 6000 RPMs.
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Figure 4. The SpectraQuest test bench

Table 1. Considered faults

Defect  Type Severity

Bearing Inner ring High
Outer ring High

Rotor Static unbalance Low

Static unbalance  High

The vibration signals are acquired using three IFM VSA005
accelerometers sampling at 25.6 kHz, placed on the rightmost
bearing housing. A high sampling rate is indispensable as
some faults occur at high frequencies. Several artificial de-
fects representative of most naturally occurring faults are in-
troduced as summarized by Table 1.

In the present investigation, the test bench was employed to
generate datasets across five distinct domains. Each domain
is characterized by a specific speed curve that exemplifies an
acceleration and deceleration cycle—commonly referred to
as coast-up and coast-down phases. Such cycles are emblem-
atic of the fluctuating operational conditions frequently en-
countered within industrial environments.

The domain shift problem is illustrated in Figure 5. A light-
weight one-dimensional Convolutional Neural Network (1D-
CNN) was used, based on the architecture described in Ta-
ble 4, was trained on a single domain. The 1D-CNN is
recognized as the state-of-the-art architecture (Borghesani,
Herwig, Antoni, & Wang, 2023) for intelligent vibration-
based fault diagnosis. Despite the impressive performance
for working regimes of 1500 RPMs, the model accuracy
drops significantly when the rotating speed varies.

Subsequently, five transfer tasks were defined, each depicted
in Table III. The construction of these tasks allows defining
actual transfer scenarios in the presence of varying working
conditions.

The subsequent discussion will illustrate how the suggested
pre-processing technique enhances the generalization capa-
bilities of the CNN model, without requiring the adoption of
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Figure 5. The domain shift problem: model accuracy de-
creases significantly when used on working conditions not
represented in the training data

Table 2. Domains

Domain Speed (RPM)
A 0 to 1500

B 1500

C 1500 to 2500
D 2500

E 2500 to 1500
F 1500

G 1500to 0

Table 3. Cross-domain diagnosis tasks

Task Source domain Target domain

O\ W B[ W D] |
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a more complicated model.

Table 4. 1D CNN Architecture

Layer Type In. Ch. Out. Ch. Kernel/Stride/Size
Convld 1 3 Kernel=100, Stride=1
MaxPoolld - - Kernel=8, Stride=8
Convld 3 3 Kernel=50, Stride=1
MaxPoolld - - Kernel=5, Stride=5
Linear (FC1) 195 32 -

Dropout - - p=0.5

Linear (FC3) 32 5 -

5. RESULTS AND DISCUSSION

The model was trained in each task with 120 samples per
source domain, with a sample being a 3125-long vibration
signal in 10 different runs. The lambda parameter was set
empirically to 1.2, the learning rate to 0.001, the number of
epoch to 200. The early stopping strategy was employed to
obtain a satisfying trained model. Note that the model itself is
not the focus of the present study, it is merely used to demon-
strate the generalization capabilities increase enabled by the
proposed method.

The accuracies on unseen test domains with and without the
preprocessing employed are then compared. It is important
to note that whether with or without the preprocessing runs,
the target domains were never included in the training data,
meaning that the inference is performed on never-seen-before
domain distributions.

The diagnosis results on each of the cross-domain diagnosis
tasks are shown in Figure 4. Where it can be seen that the
proposed pre-processing method increases the cross-domain
accuracy of the model. The task 4 yields a diminished in-
crease because the rotating speed of the target domain is iden-
tical to the source domain, showing that the proposed method
does not decrease the adequate performance of in-distribution
classification performance of modern models.

It must also be noted however that the first and sixth task’s
accuracy are not improved by the proposed method as very
low decreasing speed carry very little energy and thus very
little information, making it difficult to apply the proposed
preprocessing scheme.

This study addressed the common issue of ’domain shift’
caused by changes in a machine’s operational environment
that often lead to errors in machine fault detection by sophis-
ticated computer models. The proposed approach sought to
simplify the diagnosis process by filtering out the environ-
mental noise from the signals machines give off, focusing in
on the genuine indicators of malfunctions.

To validate the proposed technique, a test bench that simu-
lates a variety of operational conditions and failures machines
might encounter in real-world scenarios was utilized. Across

HE  Without Preprocessing
B With Preprocessing
0.8

Test accuracy

0.2

0.0 1 2 3 4 5 6
Task

Figure 6. The effects of the proposed preprocessing method
on the test accuracy of the model

five different domains, representing a range of typical indus-
trial settings, our results indicate that our method, which em-
ploys a simple decision model with few parameters, was ca-
pable of identifying machine faults with an efficacy compara-
ble to the more complex, state-of-the-art models currently in
use.

6. CONCLUSION

In conclusion, this paper has presented a preprocessing tech-
nique that utilizes sparse representation to extract the domain-
agnostic diagnosis information of machinery health signals,
thereby significantly reducing the interference of domain-
specific noise. The proposed method has been validated
through a series of transfer tasks across different domains,
revealing a significant improvement in model generalization
without the necessity of resorting to complex neural network
architectures.

On top of the generalization improvements, the proposed
scheme use physically interpretable features which makes
it easier to understand the output of the simple lightweight
model employed here.

The study’s limitations also open up new avenues for re-
search, particularly in the domain of signal acquisition under
extremely low-energy conditions. Addressing the shortfall in
task 1 and 5 performance, where low decreasing speed re-
sults in signals with minimal information content, remains a
challenge for future investigation.
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