Development of a Feature Extraction Methodology for Prognostic Tasks of Aerospace Structures and Systems
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Francesco Falcetelli
Raffaella Di Sante Nick Eleftheroglou
Abstract
The performance of prognostic models used for prognostic health management (PHM) applications heavily depend on the quality of features extracted from raw sensor data. Traditionally, feature extraction criteria such as monotonicity, prognosability, and trendability are selected intuitively. However, this intuitive selection may not be optimal.
This research introduces an innovative approach to transform raw data into 'high-scoring' data without the need for predefined feature extraction criteria. Our methodology involves generating a set of synthetic high-scoring time series. These synthetic time series, resembling the length and amplitude of target features, are created through Monte Carlo sampling (MCS) of a user-defined hidden semi-markov model (HSMM). We pair these synthetic time series with raw data/features from the signals and use them as targets to train a convolutional neural network (CNN). As a result, the trained CNN can convert input features into high-scoring ones, irrespective of their initial characteristics. So, this study provides the following contribution to PHM frameworks: it transforms raw data/features into high-scoring ones without relying on predefined criteria, rather on stochastically generated labels that resemble the nature of the degradation processes. It is worth noting, that the proposed FE technique is independent of the prognostic model that will be utilised, thus making it applicable to the established prognostic models.
We demonstrate and validate the effectiveness of this approach using acoustic emission (AE) sensor data for remaining useful life (RUL) estimation of open-hole CFRP specimens. We compare prognostic performance using cumulative AE features with their transformations via our proposed framework. The transformed features exhibit superior prognostic performance, underscoring the value of our innovative feature extraction framework.
How to Cite
##plugins.themes.bootstrap3.article.details##
feature extraction, prognostics, aerospace structures, machine leanring, hidden markov models
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.