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ABSTRACT

The performance of prognostic models used for prognostic
health management (PHM) applications heavily depend on
the quality of features extracted from raw sensor data. Tra-
ditionally, feature extraction criteria such as monotonicity,
prognosability, and trendability are selected intuitively. How-
ever, this intuitive selection may not be optimal.
This research introduces an innovative approach to transform
raw data into ’high-scoring’ data without the need for prede-
fined feature extraction criteria. Our methodology involves
generating a set of synthetic high-scoring time series. These
synthetic time series, resembling the length and amplitude
of target features, are created through Monte Carlo sampling
(MCS) of a user-defined hidden semi-markov model (HSMM).
We pair these synthetic time series with raw data/features from
the signals and use them as targets to train a convolutional
neural network (CNN). As a result, the trained CNN can con-
vert input features into high-scoring ones, irrespective of their
initial characteristics. So, this study provides the following
contribution to PHM frameworks: it transforms raw data/fea-
tures into high-scoring ones without relying on predefined
criteria, rather on stochastically generated labels that resemble
the nature of the degradation processes. It is worth noting, that
the proposed FE technique is independent of the prognostic
model that will be utilised, thus making it applicable to the
established prognostic models.
We demonstrate and validate the effectiveness of this approach
using acoustic emission (AE) sensor data for remaining useful
life (RUL) estimation of open-hole CFRP specimens. We com-
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pare prognostic performance using cumulative AE features
with their transformations via our proposed framework. The
transformed features exhibit superior prognostic performance,
underscoring the value of our innovative feature extraction
framework.

1. INTRODUCTION

The current state-of-the-art feature extraction (FE) for prog-
nostics relies heavily on deterministic targets chosen based
on intuitively defined metrics such as monotonicity, prognos-
ability, and trendability (Coble & Hines, 2009). These targets
have shown efficacy in transforming raw data from sensors,
providing a foundational approach for modelling degradation
histories (Eleftheroglou, 2020; Moradi, Broer, Chiachı́o, Bene-
dictus, & Zarouchas, 2023).
The literature-standard procedure for FE for prognostics in-
cludes the transformation of the noisy sensor data to high-
scoring ones by utilising predefined deterministic labels. These
labels are usually derived from simple functions such as second-
degree polynomials, exponential and logarithmic. However,
the inherent limitation of these deterministic labels lies in their
assumption of certainty during the transformation process.
This simplification potentially restricts their predictive accu-
racy and applicability, especially in scenarios characterised
by complex and stochastic behaviours of system deterioration
and noisy sensor measurements. Additionally, setting deter-
ministic targets for transforming inherently stochastic signals,
may significantly increase the complexity and computational
time of the applied models (Xu et al., 2023; Chen, Qin, Wang,
& Zhou, 2021; Ye, Zhang, Shao, Niu, & Zhao, 2022). These
critical deficits motivate our research, highlighting a signifi-
cant gap in existing methodologies. There is an evident need
for enhanced feature extraction techniques that account for the
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inherent noise associated with the sensor measurements.
Our research aims to fill this gap by introducing a novel ap-
proach integrating a stochastic labelling approach for noisy
sensor signals with convolutional neural networks (CNNs).
This method leverages Monte Carlo sampling (MCS) of pre-
defined hidden semi-Markov models (HSMMs) to generate
high-scoring degradation trajectories that serve as labels for
transforming the sensor data utilizing the CNN. By doing so,
the model is trained to transform the raw condition monitoring
(CM) data into features suitable for prognostic health manage-
ment (PHM) frameworks while accounting for the inherent
noise of sensor measurements. The CNN is also trained on
time windows of the data rather than the entire sequences.
This attribute enables the model’s applicability in real-world
scenarios, allowing it to operate online.
The main contribution of the present study is the integration of
MCS of HSMMs with CNNs to transform raw sensor data into
stochastic degradation trajectories, thus incorporating random-
ness while being able to operate online in real-world use cases.
By alleviating the ill-posed dependency of the FE methods
on deterministic labels that stem from intuitive pre-defined
metrics, we aim to create a simple and efficient online FE
methodology able to transform raw sensor data into features
with enhanced prognostic performance. This will ensure the
accuracy and higher certainty of the applied PHM frameworks.
The remaining of this study is organised as follows:

• Section 2 delves into the core methodology of this re-
search, providing insight into all of the different com-
ponents of the proposed transformation methodology as
seen in Figure 1.

• Section 3 presents a case study involving acoustic emis-
sion (AE) data and demonstrates the proposed method-
ology’s practical application and efficacy. This section
is crucial for illustrating the model’s ability to handle
real-world data.

• Section 4 discusses the research results, by first looking
at the transformation of the data and then focusing on
the prognostic outcomes. This section highlights the im-
proved prognostic performance achieved using the trans-
formed data by comparing these results against the base-
line cumulative transformation of the raw data. This com-
parative analysis underscores the proposed transforma-
tion’s enhanced performance in PHM tasks.

• Section 5 concludes the paper with a discussion of the
implications of the research findings and proposes ideas
for future works.

2. ASPECTS OF THE FEATURE EXTRACTION FRAME-
WORK

In this section, we will introduce the method for enhancing
the performance of prognostic algorithms by transforming
raw data signals into forms similar to those generated through
Monte Carlo simulated data. The methodology unfolds over

Figure 1. Flowchart of the proposed methodology.

four subchapters, detailing each critical phase of the transfor-
mation process:

1. Label Creation via MCS an HSMM: This section de-
scribes how MCS of HSMM generates labels with the
same time length as the target signal. These labels serve
as a reference for the desired signal characteristics.

2. Data Windowing for Online Operation: The necessity
of data windowing is explored here, underlining its impor-
tance in developing a system capable of online operation.
Data windowing segments the continuous data stream,
facilitating real-time processing and analysis.

3. Support Model for EOL Estimation and time feature
normalization: This part of the method involves creating
a model to predict an asset’s end of life (EOL). Knowing
the EOL is crucial for normalizing the time feature across
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all signals, ensuring consistency in the data transforma-
tion process.

4. Convolutional Neural Network (CNN) Model for Fea-
ture Transformation: The technique’s culmination is de-
veloping a model capable of converting raw data signals
into idealized forms. This model leverages the insights
gained from the previous steps to enhance the raw signals,
making them more suitable for prognostics.

Together, these steps outline a comprehensive approach to data
signal transformation that will boost the predictive accuracy
and reliability of prognostic tools.

2.1. Label Creation via MCS of HSMM

Our framework’s data transformation is based on a supervised
learning algorithm. To that end, we need to provide labels for
our samples. These labels need to encapsulate the stochastic
nature of the assets’ degradation. The way to achieve that is
by modelling the degradation process with an appropriately
initialized HSMM and then utilising it to generate degradation
histories of equal length to our training samples. In order to
generate degradation histories from a pre-initialized HSMM,
we utilize MCS. It is worth noting that the initialization of the
HSMM is a short procedure that is explained thoroughly in
Sections 2.1.1 and 3.3, and the MCS is a simple algorithm
presented in Algorithm 1. Adding to that, the label creation
procedure, as explained below, is only required during the
training step of the FE procedure. During the online deploy-
ment, the transformation of the sensor signals is done in a
sub-second time manner since it includes only the windowing
of the incoming data and the inference part of the trained CNN.
Therefore, the proposed frameworks applicability and scalabil-
ity is not an issue. In the following, the HSMM’s initialisation
is discussed, a short introduction to MCS is provided, and
finally, its utilization for the required label generation is pre-
sented.

2.1.1. HSMM Initialisation

As discussed previously, the first step is to properly initialise
the HSMM model to resemble the degradation process. To
that end, it’s needed first to declare the Initialisation topology
ζ (Eleftheroglou, Zarouchas, & Benedictus, 2020):

• The number of the hidden states (N ): representing the
different levels of degradation.

• Connectivity between hidden states (Ω): This parame-
ter defines the connectivity between the states by defining
the allowed transitions between them.

• Condition Monitoring feature (I): The observation of
the values of a single CM feature is considered to be the
sole indicator of damage in the system.

• Number of discrete monitoring values (V ): In the
case where the connection between the observation of

the CM feature and the damage states is modelled in a
non-parametric way, then it has to be converted to several
discrete levels V .

• Transition rate function (λ): This is the main character-
istic of the degradation process since each transition will
follow this function. This parameter can depend on the
sojourn time of the current state, the transition between
states, the total operating time or any combination of the
above

So, in order to fully characterise the HSMM model, a set of pa-
rameters θ = {Γ, B} are needed where Γ are the degradation
process parameters and B are observation process parameters.
Γ parameters consist of the parameters needed to define the
chosen λ function, and B parameters consist of the emission
matrix B. B is a matrix of dimension of N ∗ V containing
the likelihood that every possible observation in the Z space
will be emitted by a certain hidden state. After defining the
HSMM, in order to generate the required sequences, MCS is
utilized, which will be explained in Section 2.1.2.

2.1.2. Monte Carlo Simulated Data

Monte Carlo Sampling is a powerful statistical technique used
across various fields. At its core, it leverages the power of
randomness to solve complex problems, often too difficult or
impossible to tackle with traditional deterministic methods.
Monte Carlo Sampling operates on a simple yet profound prin-
ciple: it uses randomness to approximate problems’ solutions.
Thanks to the law of large numbers, the more samples are
used, the better the actual solution is estimated. Monte Carlo
methods are useful when analytical solutions are complex
or unavailable, providing a versatile tool for approximation
and simulation across diverse applications (Lemieux, 2009).
However, Monte Carlo sampling has two main disadvantages.
Firstly, it can be computationally inefficient, especially when
dealing with high-dimensional or complex problems. Since
Monte Carlo methods rely on random sampling to estimate
quantities, they may require a large number of samples to
achieve accurate results, which can be computationally inten-
sive and time-consuming. Secondly, Monte Carlo methods
may struggle to estimate rare events or probabilities accurately
with very low or very high values, leading to potential inaccu-
racies in the results.
In this framework, MCS is utilized to perform a “random walk”
over the HSMM. Based on the random sampling and the pre-
defined probability functions of the HSMM, a hidden state is
picked for each time step, which in turn emits an observation.
The observation is captured, and the ”random walk” continues
following the design of the model, until the transition to the
final observed and terminating state occurs. So, in the context
of the proposed methodology, Monte Carlo simulations take
place in the training process, so the testing process does not re-
quire simulated data. Hence, computational inefficiency is not
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a concern for applicability. Additionally, rare samples (events)
are not a concern of the feature extraction process since the
domain of condition monitoring techniques is predefined in
most cases.
Finally, it is worth highlighting that this approach reverses
the traditional training process for HSMMs. Instead of rely-
ing on multiple observation sequences to estimate parameters,
the predefined parameters are used to produce the observa-
tion sequences. This method is detrimental to the stochastic
generation of trajectories, which are later used as labels for
our transformations. By transforming the raw data with these
sequences, the predictive accuracy of prognostic algorithms
can be significantly enhanced. This is attributed to the fact
that this method provides a transformation based on statistical
characteristics rather than the traditionally used deterministic
labels as explained in the previous. The pseudocode for the
implementation of the MCS of the HSMM is adapted from
(Eleftheroglou, 2020) and presented in Algorithm 1.

2.2. Data Windowing for Online Operation:

After acquiring the observation sequences that will be used as
labels for the transformation of the raw data, our methodology
strategically segments both the signals and their correspond-
ing labels into fixed-length time windows. This division is
essential for facilitating the model’s operation in an online en-
vironment, where it is impractical to process the entire signal
simultaneously due to the streaming nature of data.

2.3. Support Model for EOL Estimation and time feature
normalization

However, the previously mentioned segmentation introduces
a challenge: the absence of a definitive feature indicating the
end of the signal complicates the transformation process, po-
tentially affecting the accuracy of the model’s predictions. To
address this issue, we propose developing a secondary model
capable of supporting the transformation by predicting the
end-of-life (EOL) of the asset, based solely on information
from the initial time window. In doing so, we aim to normalise
the time feature on a scale from 0 to 1. However, in practice,
this normalisation will yield values ranging from 0 to a num-
ber close to 1, as it perfomrs only a rough estimation of the
EOL, rather than an accurate prediction. This approach aids
our model in effectively adapting to and processing signals
in real time, paving the way for more accurate and reliable
predictions.
To this end, we opted for a fully connected neural network
(FCNN) tailored with a specific architecture to meet our pre-
dictive objectives. The model is stacked in this order:

• A fully connected layer of 200 neurons is designed to
process 200-time-steps inputs of the condition monitoring
feature.

• A rectified linear unit (ReLU) function to introduce non-

linearity, enhancing its learning capability.

• A dropout layer is then applied to mitigate the risk of over-
fitting by randomly omitting a subset of neurons during
the training phase.

• For the output layer, a single neuron layer is employed to
output the predicted time, encapsulating the RUL estima-
tion.

The FCNN is trained only on the first window of the training
signals. This model’s outputs are then used to normalise the
time feature by dividing all time steps of every window by
the predicted EOL value. We employ the Mean Squared Error
(MSE) as the loss function and Adamax as the optimiser. The
training regimen extends over 1000 epochs, with an Early Stop-
ping mechanism in place to monitor progress. This mechanism
halts training if no improvement is observed after 50 epochs,
simultaneously recovering the best weight combination ob-
served. This approach ensures that the model remains efficient
and effective, capturing the essential predictive dynamics with-
out succumbing to overfitting or underfitting tendencies.

2.4. Convolutional Neural Network (CNN) Model for Fea-
ture Transformation

After the labels are generated, the signal is split into windows
and normalized over its length, the final step is its transforma-
tion. This is handled by the primary model, whose architecture
is outlined as follows:

• Convolutional Layer: This layer has filters, each with
a kernel size of 1, facilitating distinct feature detection
across time series data without the need for padding. The
Glorot uniform method initializes kernel weights, with
biases set to zero.

• Activation Layer: This layer utilizes the Rectified Lin-
ear Unit (ReLU) for non-linear activation, enhancing the
model’s learning capabilities.

• Dropout Layer: A dropout rate is applied in the training
phase to reduce overfitting by randomly omitting connec-
tions from the previous layer to the next.

• Fully Connected Layer: Encapsulated in a time-distributed
wrapper, this layer selects the most relevant outputs from
the filters, culminating in the final output.

Figure 2 illustrates the architecture of the CNN model, pro-
viding an intuitive understanding of its design and flow. This
model provides the transformed CM data, concluding the pro-
posed framework.

3. CASE STUDY

In this part, the methodology proposed in Chapter 2 will be
applied, showcasing in detail the steps to transform raw acous-
tic emission data of CFRP specimens under fatigue loading
for predicting their RUL. The chapter starts explaining how
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Algorithm 1 Pseudocode of Simulated Monte Carlo data generator (Eleftheroglou, 2020)

Inputs:
M = {
ζ (int): model’s initialization parameters
θ (array): degradation and the observation parameters
}

Procedure:
X0 = 1
T0 = 0
Tage = 0
for (c = 0; c < N ; c++) do

i = Xc
s = Tc
j = i+ 1
a = U(0, 1)

Tj = Λ−1
i,j (s,−log(1− a)) where Λi,j(s, t) =

∫ t

0
λi,j(s, u) du

Tage = Tage + Tj
for (t = Tc + 1; t < Tage; t++) do

a = U(0, 1)
for (f = 2; f <= V ; f ++) do

if
∑f−1

z=1 bXj
(z) < a <

∑f
z=1 bXj

(z) then
yt = f

else
yt = 1

end if
end for

end for
end for

Output:
Xi, Ti (array): respectively the hidden state and the time at the nth transition.
yt (array): condition monitoring indicator at time t ∈ [1, D].
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Figure 2. Architecture of the primary CNN model (2.4)
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the data are created, preprocessed, labelled, sliced into time
windows, and finally transformed.

3.1. Dataset

The acoustic emission (AE) dataset utilised in this research pa-
per comes from the experiments performed in (Eleftheroglou
et al., 2020). The dataset is derived from tests on open-hole
carbon/epoxy samples, which were subjected to constant am-
plitude fatigue loading until failure. The specimens of dimen-
sions 400x45mm2 are cut from plates manufactured from
carbon/epoxy prepregs via the autoclave process. The stack-
ing sequence is a quasi-static lay-up of [0/45/90/ − 45]2S .
A hole with a diameter of 10mm was drilled in the center of
each specimen. One broadband piezoelectric transducer is
attached to each specimen, and with the help of an AMSY-6
Vallen Systeme GmbH, 8-channel AE system, the acoustic
emissions of the specimens are recorded and utilized as our
CM feature. Hence, the training dataset consists of CM data
obtained by utilizing AE sensors from seven samples under
fatigue loading, and the testing dataset consists of an eighth
specimen that is unseen during training.

3.2. Dataset Preprocessing

The preprocessing phase is designed to enhance the efficiency
and effectiveness of model training. The primary objective
was to purify the data from noise and scale it appropriately,
ensuring that the subsequent steps in our machine-learning
pipeline could properly process it. The first required step is to
discretize the data. This is achieved by employing the K-means
clustering technique (Lloyd, 1982). The entire discretization
of the dataset was done by training the K-means with the
training dataset, setting the number of clusters to 49, and
clustering both the training and test signals with the trained
model. This method played a pivotal role in cleaning the data
by effectively grouping values into clusters, thereby reducing
noise. Each cluster represented a range of values, allowing
for a more structured and less noisy dataset. However, the
process required careful consideration regarding the number
of clusters; an insufficient number could lead to the loss of
significant information from the signal. Additionally, this
clustering approach ensures that the dataset and the labels are
aligned on the same scale. As a final step of the preprocessing
phase, we establish a uniform fail value across all signals
by setting the final value of each signal feature to 50. The
discretized raw data can be seen in Figure 3. By observing
the figure, the necessity of transforming the data becomes
apparent. The raw feature is highly fluctuating and presents
no monotonicity whatsoever. Thus, it cannot be directly used
to convey the degradation characteristics of the specimens.

3.3. HSMM initialisation for the case study

This paragraph will discuss the HSMM initialisation required
for the Monte Carlo sampling to be performed. To initialise the
HSMM, we must define a topology ζ as discussed in chapter
2.1.1.

• The number of the hidden states (N ) is set at 20 (19
hidden + 1 observed).

• Connectivity between hidden states (Ω): Soft and only
left-to-right transitions (meaning that no self-healing or
repair actions are modelled) and the final state is observed
rather than hidden.

• Condition Monitoring feature (I): The connection be-
tween the CM feature’s values and the hidden states is
modelled with a non-parametric discrete probability func-
tion, whose values are defined with the emission matrix
in the following.

• Number of discrete monitoring values (V ) are set at
50.

• Transition rate function (λ): For the model of the degra-
dation of the CFRP specimens under fatigue loading, the
Weibull failure rate distribution is chosen as displayed in
Equation 1.

λ(t) =
β

α

(
t

α

)β−1

(1)

So, in order to fully describe the HSMM model, we need to
define the θ = {Γ, B} parameters. Γ parameters consist of:

• Matrix α: a (N − 1) ∗ N matrix of scale parameters
for transitions between hidden states. Represented as
a diagonal matrix with the first column as zeros. The
diagonal is made with logarithmic spacing values from
12 to 6 into 19 values.

α =



0 12 . . . 0
...

...
. . .

...
0 0 . . . 6




• Matrix β: a (N − 1) ∗ N matrix of shape parameters
for transitions between hidden states. Represented as
a diagonal matrix with the first column as zeros as the
previous one. The diagonal is made by linear spacing
values from 64 to 25 into 19 values.

β =



0 64 . . . 0
...

...
. . .

...
0 0 . . . 25




To complete the initialisation process, we must also create the
Emission Matrix B. This matrix has dimensions of N ∗ V and
displays the probability of the i-th hidden state (rows) emitting
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Figure 3. Raw discretized data of the real-world dataset

a specific observable state j-th (columns). The sum of the val-
ues in each row always adds up to 1. To fill the values, we have
opted for the truncated Gaussian distribution NT [0,49](µ, σ

2),
which is truncated at 0 and 49 since the failure state is ob-
served, rather than hidden. The standard deviation is equal to
3 for all states, and the mean ofNT is set in every row in such
a way that it increases with the row index. Thus, the mean
values of the rows are 19 linearly spaced values in the inclu-
sive [3, 49] range. We have made this decision to ensure that
the first hidden states emit the first observable states and the
last hidden states emit the last observable states, thus creating
a monotonic observation sequence. The emission matrix is
presented below:

B =




N 1
T [0,49](3, 3

2) N 2
T [0,49](3, 3

2) . . . 0

N 1
T [0,49](5.42, 3

2) N 2
T [0,49](5.42, 3

2) . . . 0
...

...
. . .

...
0 0 . . . 1




The aforementioned set of parameters is chosen empirically
in order for the model to resemble the degradation process of
composite specimens under fatigue loading. The user is free
to use their own set of parameters that suit their application.
So once the parameters are defined, the MCS Algorithm 1 can
be run in order to generate the labels.

3.4. Data Windowing of the available data

The data are segmented into fixed-length time windows, as
the user specifies. In this research paper, the selected time
window is fixed at 200-time steps, corresponding roughly to
10% of the average total length. The size of the windows is

chosen intuitively, but it can’t be too small since the prediction
of the EOL for the normalisation in the following steps will
be inaccurate and not too big since doing so will remove the
online applicability of the framework. The window advances
by one step at each iteration, effectively creating an overlap of
199 timesteps. This allows us to increase the data available for
training and testing our transformation model.

3.5. EOL estimations and time feature normalisation of
the available data

As previously highlighted, the model’s need to predict the EOL
derives from our aim to normalize the time feature for the train-
ing of the transformation model. The results are presented in
Table 1. It can be seen that the error of the estimations varies
across the train specimens, with errors up to 20%. However,
since this model is used to provide an initial rough estima-
tion of the EOL for the normalization of the time feature, as
presented in Section 4, its estimations are more than adequate.

Table 1. EOL Results with Corrected Error Percentages

Signal Predicted Actual Error (%)
Train 1 84128 82176 2.38
Train 2 54304 57568 -5.67
Train 3 48320 61024 -20.82
Train 4 50624 49280 2.73
Train 5 34272 30336 12.97
Train 6 84416 76992 9.64
Train 7 96448 96896 -0.46

Test 77152 68768 12.19
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3.6. CNN model architecture for the available data trans-
formation

In developing our 1D CNN model, the choice of hyperparam-
eters, loss function, and optimizer was deliberate and aimed at
optimizing performance for our specific dataset characteristics.

• The decision to employ a kernel of dimension 1 ensures
that the filter remains unaffected by padding, maintaining
the feature map’s dimensionality identical to the input.
This approach guarantees continuity between successive
windows, avoiding noisy spikes at the prediction’s begin-
ning and end. Given our transformation goal, this is a
critical factor: the prognostic model can lead to wrong
predictions.

• For our loss function, Mean Squared Error (MSE) was
selected to precisely track the fluctuating nature of our
labels, aiming for a regression model that closely mirrors
the original data.

• After experimenting with various optimizers, Adamax
emerged as the most effective, offering superior conver-
gence properties for our scenario.

• The model architecture was kept minimal with a single
CNN layer, a choice driven by the limited size of our
signal dataset. This simplicity facilitated a more effective
training process compared to deeper models.

• To counteract overfitting due to the high redundancy
among the time windows (as detailed in Section 3.4), we
implemented L1 regularization and dropout at standard
values.

• Due to the non linearity of the labels, CNN is equipped
with Rectified Linear Unit.

These choices collectively formed a robust framework for our
model, tailored to the unique demands of our data.

3.7. Prognostics

To showcase the effectiveness of the proposed feature extrac-
tion for PHM tasks, the Remaining Useful Life (RUL) of
the specimens will be predicted by utilising an HSMM. Any
prognostic model can be utilized in this step since the data
transformation framework is independent of the prognostic
model. However, since the degradation process is modelled
with an HSMM for the label generation, it is a straightforward
choice to utilize a model from the same family. For the prog-
nostics, the explicit duration modification to the HSMM is
chosen. Thus, following the initialization procedure explained
in Section 2.1.1, the following parameters are defined:

• The number of the hidden states (N ): It’s considered a
hyperparameter of the model, and in order to pick a value,
the elbow method utilizing the Bayesian information cri-
terion (BIC) was utilized. The optimal number of states
was found to be 7.

• Transition between hidden states (Ω): soft and left-to-
right transitions, no self transitions are allowed.

• Start probability matrix (π): the process always starts
from the first state.

• Transition rate function (λ): is assumed to be non-
parametric and depends only on the current state.

• Condition Monitoring feature (I): The connection be-
tween the hidden states and the values of the CM features
are assumed to be described by Gaussian distributions
N (µ, σ2) and represented by a mean and a standard devi-
ation observation vector.

• CM indicator space (Z): since the observation process
is modelled with a continuous probability distribution
(Gaussian), the indicator space consists of all the real
numbers (Z = {z ∈ ℜ}).

After the parameters are initialised, the parameter estimation
can be performed as described in (Yu, 2010). When the opti-
mal parameters have been estimated, they are utilised in order
to predict the RUL of the asset, following the procedure in
(Dong, He, Banerjee, & Keller, 2006)

4. RESULTS

In the first part of the current section, the transformed data
utilizing the proposed framework are presented and contrasted
against the raw data and their cumulative transformation, high-
lighting the performance of the framework. Finally, the prog-
nostic findings from the HSMM of the cumulative feature and
the one obtained from our framework are contrasted.

4.1. FE results

As a baseline for the proposed transformation, the cumulative
transformation of the discretized raw data is calculated and
presented in Figure 4a. This choice is justified as the authors
consider it to be the most straightforward choice for trans-
forming noisy and highly fluctuating data into monotonic ones.
The necessity of transforming the data in the first place lies
in the inability of prognostic algorithms to provide any mean-
ingful results when applied to fluctuating data that present no
monotonic behaviour. In Figure 4b, the transformed data uti-
lizing the proposed framework are showcased. By comparing
the two, it can be observed that even though the cumulative
features present highly monotonic behaviour (as expected due
to the cumulative summation function), there is a great un-
certainty associated with the last value directly before failure
(also known as prognostability). This is where an added con-
tribution of the proposed transformation also lies. It can be
seen (Figure 4b) that the transformed signals (both training
and test) fail at values that are very close to each other. This
is expected to, in turn, come with reduced uncertainty when
it comes to the RUL prediction values, which remains to be
seen in the following section.
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(b) Constructed feature with the proposed methodology
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(c) Comparative plot for the test sample

Figure 4. Plots for the results of the proposed methodology
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4.2. Prognostic results

In Figure 4c, the prognostic results of the test sample util-
ising both the cumulative feature and the proposed one are
presented on the same plot for comparison reasons. We can
see that not only the mean value predictions of the RUL us-
ing the constructed feature are closer to the true RUL, but
also that the 90% confidence intervals are reduced. This is
the manifestation of the main contribution of the constructed
feature, which is the reduced uncertainty of the final values
of the constructed feature compared to the cumulative one.
Hence, the goal of a non-complex FE method that aids in the
realization of accurate and highly confident PHM frameworks
is achieved.

5. CONCLUSIONS

This research introduced a methodology integrating Monte
Carlo simulated data with CNN to enhance prognostic per-
formance in predicting system degradation by incorporating
the stochastic nature of system deterioration and the noisy
measurements in the labels for transforming raw data. Its theo-
retical viability has been demonstrated, as well as its practical
applicability, particularly in its ability to operate online, mak-
ing RUL predictions for CFRP specimens under fatigue loads,
based on noisy AE measurements. It is worth noting that due to
the simplicity of the proposed framework, given enough data
and a proper HSMM initialization for the MCS (following the
procedure showcased in Section 3.3), the applicability to more
complex systems is a straightforward procedure. The main
contribution of the proposed framework lies in its simplicity
of deliberately combining well-established and non-complex
components in a novel way that alleviates the deterministic
labelling based on intuitively picked metrics in extracting suit-
able features for PHM applications. This led to the creation
of a simple and efficient model that effectively transforms raw
and noisy data for accurate and high-confidence prognostics.
Our motivation was simple: We consider the labelling of sig-
nals that are by nature stochastic with deterministic labels to
be ill-posed. Rather, we proposed the generation of labels by
sampling a stochastic model (HSMM) in a framework that is
independent of the prognostic algorithms and can be applied
online. We aim to expand this framework to be able to fuse
different CM features and compare its performance against
numerous traditional FE methods for prognostic tasks.
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